parallax 项目亮点解析
2025-06-18 00:17:43作者:伍霜盼Ellen
1. 项目的基础介绍
Parallax 是一个针对分布式多 GPU 环境的深度学习训练自动并行化工具。它通过考虑深度学习模型中每个变量是稀疏还是密集的,来优化数据并行训练。Parallax 的稀疏感知数据并行训练技术,能够提高在现有框架下表现不佳的稀疏变量的模型性能,同时对于只有密集变量的模型(如 ResNet-50 和 Inception-V3)保持相等的性能。此外,Parallax 还能够自动并行化单 GPU 深度学习模型的训练,以最小化用户的操作。
2. 项目代码目录及介绍
项目的代码目录结构如下:
.github/:包含 GitHub Actions 工作流和相关配置文件。doc/:存放项目的文档,包括用户手册和开发文档。parallax/:包含 Parallax 的核心代码,包括算法实现和优化逻辑。tensorflow/:包含了与 TensorFlow 相关的代码,Parallax 目前主要支持 TensorFlow。tools/:提供了一些辅助工具和脚本,用于安装、配置和运行项目。.gitignore:指定了 Git 忽略的文件和目录。.gitmodules:如果项目包含了子模块,该文件会列出这些子模块。LICENSE:项目的开源许可证文件,本项目采用 Apache-2.0 许可。README.md:项目的说明文件,包含了项目的介绍、安装方法和使用指南。
3. 项目亮点功能拆解
- 自动并行化:Parallax 能够自动将单 GPU 模型并行化到多 GPU 环境,无需用户进行复杂配置。
- 稀疏感知数据并行训练:针对稀疏变量进行优化,提高训练效率。
- 混合架构支持:结合参数服务器(PS)和 AllReduce(AR)两种分布式训练架构的优势,根据变量的稀疏或密集特性自动选择最佳架构。
4. 项目主要技术亮点拆解
- 智能通信优化:Parallax 会根据模型的特性,优化通信过程,减少通信开销。
- 本地聚合:通过本地聚合减少全局通信的需求,提高训练速度。
- 操作智能放置:将计算操作放置在最适合的位置,减少数据传输。
5. 与同类项目对比的亮点
与同类项目相比,Parallax 在处理稀疏模型时具有更出色的性能。在实验中,Parallax 在稀疏模型上的表现优于 TensorFlow 和 Horovod,而在密集模型上与它们相当。此外,Parallax 提供了更自动化的并行化过程,降低了用户配置的复杂度,使得分布式训练更加便捷。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19