ONNX.js 演示项目教程
1. 项目介绍
ONNX.js 是一个用于在浏览器和 Node.js 中运行 ONNX 模型的 JavaScript 库。ONNX.js 利用 WebAssembly 和 WebGL 技术,为 CPU 和 GPU 提供了优化的 ONNX 模型推理运行时。通过 ONNX.js,开发者可以在浏览器中直接运行预训练的 ONNX 模型,减少服务器与客户端之间的通信,保护用户隐私,并提供跨平台的无安装 ML 体验。
ONNX.js 演示项目(ONNX.js Demo)是一个交互式演示门户,展示了 ONNX.js 在 Vue.js 中的实际应用案例。该项目目前支持四个示例,帮助用户快速体验 ONNX.js 的强大功能。
2. 项目快速启动
安装依赖
首先,克隆项目仓库并安装依赖:
git clone https://github.com/microsoft/onnxjs-demo.git
cd onnxjs-demo
npm install
启动演示
在本地启动演示服务器:
npm run serve
这将启动一个开发服务器,并在本地运行 ONNX.js 演示。
部署演示
打包源文件以进行部署:
npm run build
打包后的文件将位于 /docs 文件夹中,准备进行部署。
Electron 支持
ONNX.js 演示还可以作为 Windows 桌面应用使用 Electron。首先创建开发者构建:
npm run build -- --mode developer
然后运行以下命令创建 Electron 应用:
npm run electron-packager
这将创建一个新的 /ONNXjs-demo-win32-x64 文件夹。运行 /ONNXjs-demo-win32-x64/ONNXjs-demo.exe 即可享受 Electron 桌面应用。
3. 应用案例和最佳实践
案例 1:SqueezeNet
SqueezeNet 是一个用于图像分类的轻量级卷积网络。在演示中,用户可以选择或上传图像,并在毫秒内看到图像所属的类别。
案例 2:ResNet-50
ResNet-50 是一个高度准确的深度卷积网络,用于图像分类。它训练了 1000 个预定义类别。与 SqueezeNet 演示类似,用户可以选择或上传图像,并查看图像所属的类别。
案例 3:FER+ 情绪识别
FER+ 是一个用于面部情绪识别的深度卷积神经网络。在演示中,用户可以选择包含人脸的图像或启动摄像头,查看显示的情绪。
案例 4:Yolo
Yolo 是一个实时对象检测神经网络,可以检测 20 种不同的对象,如人、盆栽植物和椅子。在演示中,用户可以选择图像或启动摄像头,查看图像中的对象。
案例 5:MNIST
MNIST 是一个用于预测手写数字的卷积神经网络。在演示中,用户可以在画布上绘制任何数字,模型将告诉用户绘制的数字是什么。
4. 典型生态项目
ONNX Runtime Web
ONNX Runtime Web 是 ONNX.js 的替代品,提供了增强的用户体验和改进的性能。ONNX Runtime Web 支持在浏览器中运行 ONNX 模型,并提供了更丰富的功能和更好的性能优化。
ONNX Model Zoo
ONNX Model Zoo 是一个包含多种预训练 ONNX 模型的仓库,用户可以从中选择适合自己需求的模型,并使用 ONNX.js 在浏览器中运行这些模型。
ONNX Runtime
ONNX Runtime 是一个跨平台的推理引擎,支持多种硬件加速,包括 CPU、GPU 和 TPU。ONNX Runtime 提供了高性能的推理能力,适用于各种 AI 应用场景。
通过这些生态项目,用户可以更全面地利用 ONNX 生态系统,构建强大的 AI 应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00