ONNX.js 演示项目教程
1. 项目介绍
ONNX.js 是一个用于在浏览器和 Node.js 中运行 ONNX 模型的 JavaScript 库。ONNX.js 利用 WebAssembly 和 WebGL 技术,为 CPU 和 GPU 提供了优化的 ONNX 模型推理运行时。通过 ONNX.js,开发者可以在浏览器中直接运行预训练的 ONNX 模型,减少服务器与客户端之间的通信,保护用户隐私,并提供跨平台的无安装 ML 体验。
ONNX.js 演示项目(ONNX.js Demo)是一个交互式演示门户,展示了 ONNX.js 在 Vue.js 中的实际应用案例。该项目目前支持四个示例,帮助用户快速体验 ONNX.js 的强大功能。
2. 项目快速启动
安装依赖
首先,克隆项目仓库并安装依赖:
git clone https://github.com/microsoft/onnxjs-demo.git
cd onnxjs-demo
npm install
启动演示
在本地启动演示服务器:
npm run serve
这将启动一个开发服务器,并在本地运行 ONNX.js 演示。
部署演示
打包源文件以进行部署:
npm run build
打包后的文件将位于 /docs 文件夹中,准备进行部署。
Electron 支持
ONNX.js 演示还可以作为 Windows 桌面应用使用 Electron。首先创建开发者构建:
npm run build -- --mode developer
然后运行以下命令创建 Electron 应用:
npm run electron-packager
这将创建一个新的 /ONNXjs-demo-win32-x64 文件夹。运行 /ONNXjs-demo-win32-x64/ONNXjs-demo.exe 即可享受 Electron 桌面应用。
3. 应用案例和最佳实践
案例 1:SqueezeNet
SqueezeNet 是一个用于图像分类的轻量级卷积网络。在演示中,用户可以选择或上传图像,并在毫秒内看到图像所属的类别。
案例 2:ResNet-50
ResNet-50 是一个高度准确的深度卷积网络,用于图像分类。它训练了 1000 个预定义类别。与 SqueezeNet 演示类似,用户可以选择或上传图像,并查看图像所属的类别。
案例 3:FER+ 情绪识别
FER+ 是一个用于面部情绪识别的深度卷积神经网络。在演示中,用户可以选择包含人脸的图像或启动摄像头,查看显示的情绪。
案例 4:Yolo
Yolo 是一个实时对象检测神经网络,可以检测 20 种不同的对象,如人、盆栽植物和椅子。在演示中,用户可以选择图像或启动摄像头,查看图像中的对象。
案例 5:MNIST
MNIST 是一个用于预测手写数字的卷积神经网络。在演示中,用户可以在画布上绘制任何数字,模型将告诉用户绘制的数字是什么。
4. 典型生态项目
ONNX Runtime Web
ONNX Runtime Web 是 ONNX.js 的替代品,提供了增强的用户体验和改进的性能。ONNX Runtime Web 支持在浏览器中运行 ONNX 模型,并提供了更丰富的功能和更好的性能优化。
ONNX Model Zoo
ONNX Model Zoo 是一个包含多种预训练 ONNX 模型的仓库,用户可以从中选择适合自己需求的模型,并使用 ONNX.js 在浏览器中运行这些模型。
ONNX Runtime
ONNX Runtime 是一个跨平台的推理引擎,支持多种硬件加速,包括 CPU、GPU 和 TPU。ONNX Runtime 提供了高性能的推理能力,适用于各种 AI 应用场景。
通过这些生态项目,用户可以更全面地利用 ONNX 生态系统,构建强大的 AI 应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00