PyTorch Scatter项目中的scatter操作已并入PyTorch主库
在深度学习框架PyTorch的生态系统中,PyTorch Scatter项目一直以其高效的scatter操作而闻名。scatter操作是一种常见的数据处理方式,它允许用户将源张量的值按照指定的索引分散到目标张量的不同位置。这种操作在图神经网络(GNN)等需要处理不规则数据的场景中尤为重要。
最近,PyTorch Scatter项目的一个重要进展是其核心功能已经被上游合并到PyTorch的主库中。这意味着用户现在可以直接通过PyTorch内置的torch.scatter_reduce_函数来使用这一功能,而无需额外安装PyTorch Scatter库。这一变化不仅简化了用户的依赖管理,也标志着PyTorch社区对分散操作重要性的认可。
对于不熟悉scatter操作的用户来说,可以将其理解为一种高级的索引操作。例如,假设我们有一个源张量和一个索引张量,scatter操作会根据索引将源张量的值分配到目标张量的对应位置。这在处理图数据时尤其有用,比如在聚合节点特征时,可以将邻居节点的特征通过scatter操作聚合到中心节点。
PyTorch主库中引入的torch.scatter_reduce_函数提供了与PyTorch Scatter项目相似的功能,但可能在某些实现细节上有所不同。用户在使用时应注意查阅PyTorch官方文档,以确保正确理解和使用这一功能。
这一上游合并的过程也展示了开源社区的良好协作模式。PyTorch Scatter项目的维护者与PyTorch核心团队合作,将经过验证的高效实现整合到主库中,从而惠及更广泛的用户群体。对于依赖scatter操作的研究人员和开发者来说,这无疑是一个积极的变化,因为它减少了外部依赖,提高了代码的可移植性和稳定性。
总的来说,PyTorch Scatter项目的scatter功能被并入PyTorch主库是一个值得关注的进展,它不仅反映了PyTorch生态系统的成熟,也为用户提供了更加统一和便捷的使用体验。随着PyTorch的不断发展,我们可以期待更多这样的功能整合,进一步丰富和简化深度学习的研究与开发流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00