推荐开源项目:LiLT —— 简单而有效的跨语言布局转换器
在自然语言处理领域,文档理解是一个至关重要的挑战。结构化文档的理解涉及到文本、布局和视觉信息的融合,而这正是新推出的开源项目LiLT(Language-Independent Layout Transformer)的核心所在。LiLT最近已被集成到Hugging Face的transformers库中,为研究者提供了强大的工具。
项目介绍
LiLT是2022年ACL大会论文中的创新成果,其设计了一种可以跨语言工作的布局转换器。通过预训练仅针对英语的丰富视觉文档,它能够与不同语言的预训练模型结合,直接应用于其他语言的微调任务。这个开源实现包括了PyTorch代码,并提供了FINE-TUNE流程,适用于FUNSD和XFUND数据集。

项目技术分析
LiLT的核心在于其语言无关性,能够以简单的形式处理多语言布局信息。它利用Transformer架构,将文本和布局信息有效地融合,使得模型能够在无额外语言特定训练的情况下进行迁移学习。此外,项目还提供了一个脚本,用于自动生成与其他语言的RoBERTa兼容的预训练权重。
项目及技术应用场景
LiLT特别适用于需要理解结构化文档的场景,如表格识别、发票解析、法律文件分析等。借助它的跨语言特性,该技术能广泛应用于多语种环境下的文档自动化处理系统,帮助企业、政府机构或科研团队更高效地处理大量多元语言的纸质或电子文档。
项目特点
- 语言独立性:预训练仅需一种语言,即可应用到多种语言环境。
- 易用性:代码简洁明了,提供直接的微调示例,便于快速上手。
- 高度可扩展:支持与现有预训练模型集成,如RoBERTa、InfoXLM,满足各种需求。
- 性能优秀:实验结果表明,在多个数据集上的表现超越同类方法。
安装与使用
要安装并试用LiLT,请按照项目README中的指令进行操作,这将涉及创建conda环境、安装必要的依赖以及下载预训练模型和数据集。微调过程也已详细说明,涵盖了Semantic Entity Recognition和Relation Extraction任务。
总的来说,LiLT是一个强大且灵活的工具,对于任何关注于跨语言文档理解的研究人员或开发者来说,都是一个不容错过的选择。立即加入,探索更多可能吧!
若在使用过程中有任何问题或建议,欢迎联系项目作者eejpwang@mail.scut.edu.cn。引用该项目时,请参考提供的论文引用信息。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00