Async-profiler在Zing JDK上使用cache-misses事件的排障指南
2025-05-28 14:34:45作者:傅爽业Veleda
问题现象分析
在使用async-profiler工具对Zing JDK应用程序进行性能分析时,部分用户遇到了无法采集cache-misses硬件性能事件的问题。具体表现为:
- 在Zing23.08.100.0+1版本环境中可以正常采集cache-misses事件
- 在Zing23.08.200.0+3版本环境中采集失败,出现"perf_event_open failed: No such file or directory"错误
- 调整内核参数kernel.perf_event_security和kernel.kptr_restrict后,仅消除了部分警告信息,但核心问题依然存在
根本原因探究
这个问题本质上与虚拟化环境对硬件性能计数器的访问限制有关。cache-misses是CPU提供的硬件性能监控计数器(PMC)事件,其可用性取决于:
- CPU架构支持:现代x86处理器通过Architectural Performance Monitoring(APM)功能提供性能计数器
- 虚拟化环境配置:云服务商(如AWS)通常会在共享实例中禁用PMC访问
- 内核权限设置:即使硬件支持,也需要适当的内核参数配置
诊断方法详解
要确认当前环境是否支持硬件性能计数器,可以通过以下方法进行诊断:
方法一:使用cpuid指令检查
执行cpuid -1
命令,重点关注输出中的"Architecture Performance Monitoring Features"部分:
有效支持的输出示例:
Architecture Performance Monitoring Features (0xa/eax):
version ID = 0x2 (2)
number of counters per logical processor = 0x4 (4)
bit width of counter = 0x30 (48)
不支持的输出特征:
Architecture Performance Monitoring Features (0xa/eax):
version ID = 0x0 (0)
number of counters per logical processor = 0x0 (0)
方法二:检查内核启动日志
通过dmesg
查看内核启动时的Performance Events相关日志:
支持PMC的环境:
Performance Events: IvyBridge events, full-width counters, Intel PMU driver
... version: 2
... bit width: 48
不支持的环境:
Performance Events: unsupported p6 CPU model 154 no PMU driver
解决方案建议
- 确认环境支持性:首先使用上述诊断方法确认当前环境是否支持硬件性能计数器
- 调整分析策略:在不支持PMC的环境中,可改用软件事件进行分析,如:
- CPU分析:
-e cpu
- 锁分析:
-e lock
- 内存分配分析:
-e alloc
- CPU分析:
- 环境迁移:对于必须使用硬件事件的分析场景,考虑迁移到支持PMC的专用服务器环境
技术背景延伸
现代处理器通过Performance Monitoring Unit(PMU)提供硬件性能计数器,这些计数器可以精确测量:
- 缓存命中/失效(cache-misses)
- 分支预测(branch-misses)
- 指令退休(instructions) 等微架构级别事件。但在虚拟化环境中,出于安全性和资源隔离考虑,云服务商通常会限制对这些计数器的访问。
async-profiler作为一款强大的性能分析工具,其硬件事件采集能力直接依赖于底层环境的支持。理解这些限制条件有助于用户更有效地规划性能分析方案。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K