Async-profiler在Zing JDK上使用cache-misses事件的排障指南
2025-05-28 22:10:35作者:傅爽业Veleda
问题现象分析
在使用async-profiler工具对Zing JDK应用程序进行性能分析时,部分用户遇到了无法采集cache-misses硬件性能事件的问题。具体表现为:
- 在Zing23.08.100.0+1版本环境中可以正常采集cache-misses事件
- 在Zing23.08.200.0+3版本环境中采集失败,出现"perf_event_open failed: No such file or directory"错误
- 调整内核参数kernel.perf_event_security和kernel.kptr_restrict后,仅消除了部分警告信息,但核心问题依然存在
根本原因探究
这个问题本质上与虚拟化环境对硬件性能计数器的访问限制有关。cache-misses是CPU提供的硬件性能监控计数器(PMC)事件,其可用性取决于:
- CPU架构支持:现代x86处理器通过Architectural Performance Monitoring(APM)功能提供性能计数器
- 虚拟化环境配置:云服务商(如AWS)通常会在共享实例中禁用PMC访问
- 内核权限设置:即使硬件支持,也需要适当的内核参数配置
诊断方法详解
要确认当前环境是否支持硬件性能计数器,可以通过以下方法进行诊断:
方法一:使用cpuid指令检查
执行cpuid -1命令,重点关注输出中的"Architecture Performance Monitoring Features"部分:
有效支持的输出示例:
Architecture Performance Monitoring Features (0xa/eax):
version ID = 0x2 (2)
number of counters per logical processor = 0x4 (4)
bit width of counter = 0x30 (48)
不支持的输出特征:
Architecture Performance Monitoring Features (0xa/eax):
version ID = 0x0 (0)
number of counters per logical processor = 0x0 (0)
方法二:检查内核启动日志
通过dmesg查看内核启动时的Performance Events相关日志:
支持PMC的环境:
Performance Events: IvyBridge events, full-width counters, Intel PMU driver
... version: 2
... bit width: 48
不支持的环境:
Performance Events: unsupported p6 CPU model 154 no PMU driver
解决方案建议
- 确认环境支持性:首先使用上述诊断方法确认当前环境是否支持硬件性能计数器
- 调整分析策略:在不支持PMC的环境中,可改用软件事件进行分析,如:
- CPU分析:
-e cpu - 锁分析:
-e lock - 内存分配分析:
-e alloc
- CPU分析:
- 环境迁移:对于必须使用硬件事件的分析场景,考虑迁移到支持PMC的专用服务器环境
技术背景延伸
现代处理器通过Performance Monitoring Unit(PMU)提供硬件性能计数器,这些计数器可以精确测量:
- 缓存命中/失效(cache-misses)
- 分支预测(branch-misses)
- 指令退休(instructions) 等微架构级别事件。但在虚拟化环境中,出于安全性和资源隔离考虑,云服务商通常会限制对这些计数器的访问。
async-profiler作为一款强大的性能分析工具,其硬件事件采集能力直接依赖于底层环境的支持。理解这些限制条件有助于用户更有效地规划性能分析方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111