解决smolagents中LLM幻觉观察提前终止的问题
2025-05-12 04:17:23作者:薛曦旖Francesca
在基于smolagents框架开发代码代理时,开发者可能会遇到一个典型问题:大型语言模型(LLM)有时会自行生成虚假的观察结果,而不是等待实际的代码执行返回真实数据。这种现象在涉及未来时间查询的场景中尤为明显。
问题现象分析
当使用smolagents的CodeAgent处理涉及未来时间信息的查询时,比如"告诉我关于亚马逊2025年股东信的内容",模型会表现出以下行为模式:
- 模型首先尝试执行网络搜索代码
- 但在实际执行前,模型自行生成了"未找到相关信息"的观察结果
- 基于这个虚假观察,模型提前终止了任务流程
这种行为导致了一个严重问题:模型没有真正执行网络搜索,而是依赖其参数知识做出了判断。对于未来事件的查询,模型的参数知识必然是不准确的,因为它无法预知未来。
技术原理探究
这种现象源于LLM的推理机制。在默认配置下,smolagents框架允许模型在生成代码块后,继续生成观察结果。模型倾向于快速完成任务,因此会基于自身知识"预测"可能的观察结果,而不是等待实际执行。
具体到技术实现层面,问题出在模型的停止序列(stop sequences)配置上。默认配置可能没有严格限制模型在代码块后停止生成,导致模型继续生成观察部分。
解决方案与实践
经过深入分析,我们找到了有效的解决方案:通过显式设置模型的推理配置,严格控制生成流程。关键配置如下:
inferenceConfig={
"stopSequences": ["<end_code>", "Observation:", "Calling tools:"]
}
这一配置实现了以下效果:
- 强制模型在生成代码块标记
<end_code>后停止 - 防止模型自行生成观察部分
- 确保所有观察结果都来自实际代码执行
最佳实践建议
基于这一问题的解决经验,我们建议smolagents开发者:
- 始终明确设置模型的停止序列
- 对于时间敏感查询,考虑添加额外的验证逻辑
- 在开发过程中,仔细检查模型生成的完整轨迹
- 对于未来事件查询,建议明确告知用户信息的时间限制
总结
smolagents框架提供了强大的代码代理能力,但需要开发者理解其底层工作机制并正确配置。通过合理设置停止序列,我们可以有效避免LLM的幻觉观察问题,确保代理行为的准确性和可靠性。这一经验不仅适用于时间相关查询,也适用于其他需要严格依赖外部数据源的场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492