【免费下载】 WebPlotDigitizer 使用指南
项目介绍
WebPlotDigitizer 是一个基于网页的工具,专为从图表图像中提取数值数据而设计。它支持多种图表类型,包括 XY 图、极坐标图、 ternary 图和地图。该工具受到广大用户和研究者的欢迎,并且在众多已发布的学术文章中被引用。作为一个开源项目,WebPlotDigitizer 遵循 GNU AGPL v3 许可证发布,由 Ankit Rohatgi 维护,并托管于 GitHub。
项目快速启动
要迅速开始使用 WebPlotDigitizer,确保你的浏览器是最新的版本,如 Google Chrome, Firefox, Safari 或者至少是 Internet Explorer 11。接下来的步骤非常直接:
-
访问网站: 直接导航到 WebPlotDigitizer 的在线界面。
-
加载图片: 点击“Load Image”按钮,选择你含有数据的图表图片文件进行上传。
-
定义轴: 在自动模式或手动模式下,依据提示设定图表的轴。
-
数据获取: 根据图表类型,WebPlotDigitizer 将引导你校准或者自动检测网格以精确地选取数据点。
-
保存数据: 完成数据点的选择后,你可以导出这些数据到CSV或其他格式,供进一步分析或处理。
示例命令行(非实际操作,因为这是一个网页应用):
打开浏览器 -> 访问 https://automeris.io/WebPlotDigitizer -> 加载图表图片 -> 配置轴和数据点 -> 导出数据
应用案例和最佳实践
WebPlotDigitizer广泛应用于科学研究、工程分析和经济报告等领域,其中最佳实践通常涉及以下几点:
- 精确对齐: 利用软件提供的功能,精确对齐轴和比例尺,确保数据提取的准确性。
- 数据校验: 提取后的数据应与原图表视觉对比,确认其正确性。
- 利用批处理: 对于大量相似图表的数据提取,可以优化工作流程,减少重复劳动。
典型生态项目
尽管WebPlotDigitizer本身是一个独立的应用,但其在数据分析和科研领域内与其他工具形成了良好的配合。例如,提取的数据经常被导入到统计软件如R、Python的Pandas库或Excel中,用于进一步的数据分析和可视化。此外,与数据科学生态系统中的Jupyter Notebook结合使用时,可以立即对提取的数据执行高级分析脚本,加强了从原始图表到深入洞察的转换过程。
通过遵循以上指导,您可以高效地利用WebPlotDigitizer来从出版物、报告或网络上的图形中提取宝贵的定量信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00