KiTS19 项目教程
2026-01-23 06:44:36作者:裴锟轩Denise
1. 项目介绍
KiTS19 是 2019 年肾脏和肾脏肿瘤分割挑战赛的官方仓库。该项目旨在提供一个用于肾脏和肾脏肿瘤分割的数据集和相关工具,帮助研究人员和开发者进行医学图像分析和机器学习模型的训练。
项目背景
KiTS19 数据集包含了 300 个病例,每个病例都包含 CT 图像和相应的语义分割标签。这些数据来自临床实践,涵盖了不同中心和不同设备采集的图像,具有较高的多样性和挑战性。
项目目标
- 提供高质量的肾脏和肾脏肿瘤分割数据集。
- 促进医学图像分析领域的研究和开发。
- 通过挑战赛的形式,推动分割算法的进步。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了 Python 3.x 和 pip。
克隆项目
首先,克隆 KiTS19 仓库到本地:
git clone https://github.com/neheller/kits19.git
cd kits19
安装依赖
安装项目所需的依赖包:
pip3 install -r requirements.txt
下载数据
运行以下命令下载数据集:
python3 -m starter_code.get_imaging
数据结构
下载完成后,数据将存储在 data/ 目录下,结构如下:
data/
├── case_00000
│ ├── imaging.nii.gz
│ └── segmentation.nii.gz
├── case_00001
│ ├── imaging.nii.gz
│ └── segmentation.nii.gz
...
└── case_00209
├── imaging.nii.gz
└── segmentation.nii.gz
加载和可视化数据
使用提供的脚本加载和可视化数据:
from starter_code.utils import load_case
from starter_code.visualize import visualize
# 加载数据
volume, segmentation = load_case("case_00123")
# 可视化数据
visualize("case_00123", "output_directory")
3. 应用案例和最佳实践
应用案例
KiTS19 数据集可以用于多种应用场景,包括但不限于:
- 肾脏和肾脏肿瘤的自动分割:通过训练深度学习模型,实现对肾脏和肾脏肿瘤的自动分割。
- 医学图像分析研究:用于研究不同分割算法在肾脏图像上的表现。
- 临床决策支持系统:为医生提供辅助诊断工具,帮助他们更准确地识别和定位肾脏病变。
最佳实践
- 数据预处理:由于数据来自不同中心和设备,建议进行归一化和插值处理,以减少数据的空间不一致性。
- 模型选择:可以尝试使用 U-Net、Mask R-CNN 等经典的分割模型,并根据实际情况进行调整。
- 交叉验证:使用交叉验证方法评估模型的性能,确保模型的泛化能力。
4. 典型生态项目
Nibabel
Nibabel 是一个用于处理 NIfTI 格式医学图像的 Python 库。KiTS19 项目中使用了 Nibabel 来加载和处理 NIfTI 格式的图像数据。
PyTorch
PyTorch 是一个流行的深度学习框架,广泛用于图像分割任务。你可以使用 PyTorch 来构建和训练肾脏分割模型。
MONAI
MONAI 是一个专为医学图像分析设计的开源框架,提供了丰富的工具和模块,帮助开发者快速构建和训练医学图像分析模型。
通过结合这些生态项目,你可以更高效地进行肾脏和肾脏肿瘤分割的研究和开发。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355