Apache Kyuubi 中 ZORDER 插入功能的优化实践
背景介绍
在 Apache Kyuubi 项目中,ZORDER 是一种数据布局优化技术,它通过对数据进行特定的排序和分区,可以显著提高查询性能,特别是在处理大规模数据时。ZORDER 通过将多维数据映射到一维空间并保持局部性,使得范围查询能够更高效地定位相关数据块。
问题发现
在项目开发过程中,我们发现当逻辑执行计划是 RepartitionByExpression 或 Repartition 时,系统无法执行 ZORDER 插入操作。这种情况限制了 ZORDER 功能的使用场景,特别是在需要对数据进行重新分区的情况下。
技术分析
RepartitionByExpression 和 Repartition 是 Spark SQL 中常用的两种数据重分区操作:
Repartition:按照指定分区数对数据进行均匀分布RepartitionByExpression:按照指定的表达式对数据进行分区
这两种操作都会改变数据在集群中的物理分布,而 ZORDER 排序也需要对数据进行重新组织。原先的实现中,这两种操作被视为与 ZORDER 排序互斥的场景,但实际上它们可以协同工作。
解决方案
经过深入分析,我们决定修改逻辑,允许在 ZORDER_GLOBAL_SORT_ENABLED 配置为 false 时,即使执行计划包含 RepartitionByExpression 或 Repartition 也能执行 ZORDER 插入操作。这一改进通过以下方式实现:
- 放宽执行计划检查条件,不再将重分区操作视为 ZORDER 的障碍
- 确保在全局排序禁用时,重分区和 ZORDER 可以协同工作
- 保持原有功能在全局排序启用时的行为不变
实现细节
在代码实现上,主要修改了执行计划的验证逻辑。原先的验证会拒绝所有包含重分区操作的 ZORDER 插入请求,现在则根据 ZORDER_GLOBAL_SORT_ENABLED 配置灵活处理:
- 当全局排序启用时,保持原有严格检查
- 当全局排序禁用时,允许重分区操作与 ZORDER 结合使用
这种改进既保持了原有功能的稳定性,又扩展了 ZORDER 的使用场景。
实际价值
这一改进为 Kyuubi 用户带来了以下好处:
- 更灵活的数据组织方式:用户可以在重分区的同时应用 ZORDER 排序
- 性能优化:结合重分区和 ZORDER 可以减少后续查询的数据扫描量
- 使用场景扩展:支持更多复杂的数据处理流程
总结
通过对 Kyuubi 中 ZORDER 插入功能的优化,我们解决了重分区操作与 ZORDER 排序互斥的问题,为用户提供了更灵活高效的数据处理能力。这一改进展示了开源社区如何通过持续优化来提升项目价值,也体现了 Kyuubi 项目对用户需求的快速响应能力。
未来,我们还将继续探索更多数据布局优化技术,为大数据处理提供更高效的解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00