Python 静态类型项目教程
2024-10-10 16:23:50作者:邬祺芯Juliet
1、项目介绍
typing 是 Python 官方提供的静态类型注解库,旨在帮助开发者编写更具可读性和可维护性的代码。通过在代码中添加类型注解,开发者可以在编写代码时明确变量、函数参数和返回值的类型,从而提高代码的健壮性和可维护性。typing 库支持多种类型注解,包括基本类型、泛型、联合类型等,适用于各种复杂的编程场景。
2、项目快速启动
安装
首先,确保你已经安装了 Python 3.5 或更高版本。然后,你可以通过 pip 安装 typing 库:
pip install typing
基本使用
以下是一个简单的示例,展示了如何在 Python 中使用 typing 库进行类型注解:
from typing import List, Dict
# 定义一个函数,接受一个字符串列表和一个字典,返回一个字符串
def process_data(names: List[str], scores: Dict[str, int]) -> str:
total_score = sum(scores.values())
return f"Total score for {', '.join(names)} is {total_score}"
# 示例数据
names = ["Alice", "Bob", "Charlie"]
scores = {"Alice": 85, "Bob": 90, "Charlie": 78}
# 调用函数
result = process_data(names, scores)
print(result)
运行代码
将上述代码保存为 example.py,然后在终端中运行:
python example.py
输出结果将是:
Total score for Alice, Bob, Charlie is 253
3、应用案例和最佳实践
应用案例
1. 类型检查工具
typing 库通常与类型检查工具(如 mypy)结合使用,以在编译时捕获类型错误。例如:
from typing import List
def add_numbers(numbers: List[int]) -> int:
return sum(numbers)
# 类型检查工具会捕获这个错误
result = add_numbers([1, 2, "3"])
2. 文档生成
类型注解可以作为代码文档的一部分,帮助其他开发者理解函数的输入和输出。例如:
from typing import Tuple
def divide(a: int, b: int) -> Tuple[int, int]:
quotient = a // b
remainder = a % b
return quotient, remainder
最佳实践
- 始终使用类型注解:即使某些参数的类型很明显,也应该添加类型注解,以提高代码的可读性。
- 使用泛型:对于容器类型(如列表、字典),使用泛型来明确容器中元素的类型。
- 结合类型检查工具:使用
mypy等工具进行静态类型检查,以提前发现潜在的类型错误。
4、典型生态项目
1. mypy
mypy 是一个静态类型检查工具,与 typing 库紧密结合,可以在编译时捕获类型错误。它支持 Python 3.5 及以上版本,并且可以通过 pip 安装:
pip install mypy
2. pydantic
pydantic 是一个数据验证和设置管理库,基于 typing 库的类型注解。它可以帮助你定义数据模型,并在运行时进行类型验证。
pip install pydantic
3. fastapi
fastapi 是一个高性能的 Web 框架,广泛使用 typing 库进行类型注解。它支持自动生成 API 文档,并且与 mypy 兼容。
pip install fastapi
通过这些生态项目,你可以进一步扩展 typing 库的功能,提升代码的质量和开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K