Spring AI 1.0.0-M7 版本中模型启动器命名变更解析
2025-06-11 07:10:39作者:卓艾滢Kingsley
在Spring AI项目升级到1.0.0-M7版本后,开发者可能会遇到模型启动器依赖不可用的问题。本文将详细解析这一变更背后的技术原因,并指导开发者如何正确使用新版本的依赖配置。
命名规范变更背景
Spring AI团队在1.0.0-M7版本中对项目结构进行了优化调整,其中最重要的变化之一就是统一了模型启动器的命名规范。这一变更旨在使项目结构更加清晰,便于开发者理解和使用。
新旧命名对比
在早期版本中,模型启动器的命名模式为:
spring-ai-{model}-spring-boot-starter
而在1.0.0-M7及后续版本中,新的命名模式调整为:
spring-ai-starter-model-{model}
以Mistral AI为例:
- 旧版本:spring-ai-mistral-ai-spring-boot-starter
- 新版本:spring-ai-starter-model-mistral-ai
变更带来的优势
- 命名一致性:新的命名模式更加统一,便于记忆和使用
- 结构清晰:通过"starter-model"的命名方式,明确表示了这是一个模型相关的启动器
- 扩展性强:为未来可能添加的其他类型启动器预留了命名空间
升级建议
对于正在升级项目的开发者,建议采取以下步骤:
- 检查项目中所有Spring AI相关的依赖
- 将所有模型启动器的依赖按照新规范进行更新
- 确保版本号统一为1.0.0-M7
- 重新构建项目并测试功能
常见模型启动器示例
以下是几个常见模型在新旧版本中的依赖配置对比:
Mistral AI
<!-- 旧版本 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mistral-ai-spring-boot-starter</artifactId>
<version>1.0.0-M6</version>
</dependency>
<!-- 新版本 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-mistral-ai</artifactId>
<version>1.0.0-M7</version>
</dependency>
Ollama
<!-- 旧版本 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<version>1.0.0-M6</version>
</dependency>
<!-- 新版本 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
<version>1.0.0-M7</version>
</dependency>
总结
Spring AI 1.0.0-M7版本的命名规范变更是项目成熟过程中的重要一步,虽然短期内可能会给升级带来一些困扰,但从长远来看,这种更规范的命名方式将提高项目的可维护性和易用性。开发者应及时更新项目依赖,以适应这一变化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134