Wasmi项目中的确定性模糊测试优化实践
引言
在WebAssembly(Wasm)生态系统中,不同引擎之间的行为差异常常给模糊测试带来挑战。本文将以Wasmi项目为例,探讨如何通过技术手段优化模糊测试过程,减少因引擎实现差异导致的误报问题。
问题背景
在Wasmi项目的开发过程中,团队发现现有的差分模糊测试存在一个显著问题:当Wasmi(寄存器版)、Wasmi(堆栈版)和Wasmtime这三个Wasm引擎对同一段代码产生不同但都符合规范的行为时,系统会错误地报告bug。这种情况在需要大量栈空间的情况下尤为常见。
技术分析
栈空间管理的实现差异
不同Wasm引擎在栈空间管理上采用了不同策略:
-
Wasmi(寄存器版):采用固定大小的内存分配策略,每个函数调用分配固定大小的栈空间。这种实现方式在遇到需要大量栈空间的情况时,会更快达到栈溢出点。
-
Wasmi(堆栈版):使用动态增长的栈结构,能够更灵活地适应不同栈空间需求。
-
Wasmtime:通过强大的优化能力,能够显著减少恶意测试用例执行时所需的栈空间。
优化程度的影响
不同引擎的优化能力差异也是导致行为不一致的重要因素:
- Wasmi的两个版本对输入Wasm的优化有限
- Wasmtime则采用了更激进的优化策略
- Wasmer的两个后端(Cranelift和Singlepass)也表现出类似的差异
解决方案
Wasmi团队通过以下技术改进解决了这一问题:
-
统一栈空间管理策略:调整了不同引擎实现的栈空间分配方式,减少因管理策略不同导致的行为差异。
-
优化级别协调:在不同引擎间协调优化级别,确保测试时处于相似的优化状态下。
-
结果验证机制:改进了结果比对逻辑,能够识别合理的实现差异。
技术实现要点
-
栈空间阈值调整:为不同实现设置了合理的栈空间阈值,平衡了测试严格度和误报率。
-
确定性执行环境:确保测试环境尽可能一致,减少外部因素干扰。
-
异常处理标准化:统一了栈溢出等异常的处理方式,使不同引擎的行为更具可比性。
实践意义
这项改进对Wasm生态系统具有重要意义:
-
提高了模糊测试的准确性,减少了开发者在分析误报上花费的时间。
-
为Wasm引擎实现提供了更可靠的兼容性基准。
-
展示了在多引擎环境下进行有效测试的最佳实践。
结论
通过针对性的技术改进,Wasmi项目成功解决了因引擎实现差异导致的模糊测试误报问题。这一经验为Wasm生态系统的质量保障工作提供了有价值的参考,也展示了在复杂技术环境下进行有效测试的方法论。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









