CNI-Genie 使用与部署指南
CNI-Genie 是华为云原生团队开发的一个开源项目,旨在为容器编排器(如 Kubernetes 和 Mesos)提供灵活选择容器网络接口(CNI)插件的能力,在部署时能够根据需求选用不同的网络解决方案,例如 Calico、Flannel、Romana 或 Weave 等。
1. 项目目录结构及介绍
CNI-Genie 的仓库遵循一定的组织结构来管理其源代码和相关资源:
.
├── client # 客户端相关代码
├── conf # 配置文件夹
├── controllers # 控制器逻辑
├── docs # 文档资料
│ ├── CONTRIBUTING.md # 贡献指南
│ ├── CODE_OF_CONDUCT.md # 行为准则
│ └── README.md # 主要项目说明文档
├── e2e # 终端到终端测试
├── etc/cni/net.d # CNI 插件配置示例或默认路径
├── genie # 核心功能实现
├── interfaces # 接口定义
├── networkcrd # 网络自定义资源定义相关
├── plugins # CNI 插件相关的代码或集成点
├── releases # 版本发布信息或脚本
├── sampleconfigs # 示例配置文件
├── sampleyamls # 示例YAML配置文件
├── utils # 辅助工具函数
├── vendor # 第三方依赖库
├── .gitignore
├── travis.yml # Travis CI 配置
├── Gopkg.lock
├── Gopkg.toml
├── LICENSE # 开源许可证,使用 Apache-2.0 许可证
├── MAINTAINERS # 维护者名单
├── Makefile
└── OWNERS # 代码所有权声明文件
2. 项目的启动文件介绍
CNI-Genie 作为一个 Kubernetes 插件,没有传统意义上的“启动文件”。它的运行通常依赖于 Kubernetes 集群中配置的 CNI 接口,通过 Kubernetes 的配置或者特定的命令行参数触发。在部署环境中,关键在于配置 Kubernetes 使用 CNI-Genie 作为网络插件,这可能涉及到编辑 kubelet
的启动参数或利用 Kubernetes 的 CNI 配置机制。
若需手动介入,可能涉及的是调用或配置 Kubernetes API 来应用网络策略或网络附件定义,而不是直接启动一个单独的程序文件。
3. 项目的配置文件介绍
CNI-Genie 的配置涉及多个层面,包括但不限于 Kubernetes 自身的 CNI 配置、网络附件定义(Network Attachment Definition, NAD)以及 CNI-Genie 内部的一些定制化设置。
Kubernetes CNI 配置
CNI 的基本配置通常位于 /etc/cni/net.d
目录下,其中 .conf
文件定义了如何调用 CNI 插件。对于 CNI-Genie,这意味着创建或修改指向 CNI-Genie 的配置文件,指示集群使用 CNI-Genie 处理网络分配。
网络附件定义(NAD)
CNI-Genie 支持基于 Kubernetes Network Policy Working Group 规范的网络附加定义,这些定义通常以 YAML 形式存在,允许用户指定 pod 应该连接到哪个网络,并可以指定多种网络。NAD 的示例配置可以在 sampleyamls
目录找到,这些配置文件指导 CNI-Genie 如何为Pod分配网络资源。
内部配置
CNI-Genie 可能还有自己的配置或环境变量,用于调整其行为,比如监控哪些CNI插件、处理网络策略的规则等,但具体细节需参考项目的文档和配置文件示例。
综上所述,正确部署和使用 CNI-Genie 需要综合考虑 Kubernetes 的配置、CNI 配置体系以及具体的网络策略定义,确保所有相关配置文件被正确设置以发挥其功能。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









