基于TensorFlow Object Detection API的定制对象检测模型训练教程
1. 项目介绍
本项目是基于TensorFlow Object Detection API的定制对象检测模型训练教程。TensorFlow Object Detection API是Google开源的一个强大的深度学习框架,用于训练和部署对象检测模型。本项目旨在帮助用户熟悉和掌握如何使用TensorFlow Object Detection API来训练自己的对象检测模型。
2. 项目快速启动
以下是快速启动TensorFlow Object Detection API项目的步骤:
首先,你需要克隆TensorFlow Models仓库:
git clone https://github.com/tensorflow/models.git
Docker安装
如果你熟悉Docker,可以使用以下命令构建和运行Docker容器:
# 从git仓库的根目录(在models目录内)
docker build -f research/object_detection/dockerfiles/tf2/Dockerfile -t od .
docker run -it od
Python包安装
如果你不熟悉Docker,可以选择使用pip安装Python包:
cd models/research
# 编译protos。
protoc object_detection/protos/*.proto --python_out=.
# 安装TensorFlow Object Detection API。
cp object_detection/packages/tf2/setup.py .
python -m pip install .
安装完成后,你可以运行以下命令测试安装是否成功:
python object_detection/builders/model_builder_tf2_test.py
如果安装正确,你应该会看到一系列测试通过的输出。
3. 应用案例和最佳实践
数据收集
为了训练一个鲁棒的对象检测模型,你需要收集尽可能多样化的图片,这些图片应该有不同的背景、光照条件和随机物体。
你可以自己拍照,或者从互联网上下载图片。确保将大约80%的图片放入object_detection/images/train目录,其余20%放入object_detection/images/test目录。
数据标注
使用LabelImg工具对图片进行标注,为每个对象绘制边界框。确保选择PascalVOC格式。标注完成后,LabelImg会为每个图片生成一个XML文件,这些文件将用于创建TFRecord文件。
数据生成
将XML文件转换为CSV文件,然后使用generate_tfrecord.py脚本将CSV文件转换为TFRecord文件:
python xml_to_csv.py
python generate_tfrecord.py --csv_input=images/train_labels.csv --image_dir=images/train --output_path=train.record
python generate_tfrecord.py --csv_input=images/test_labels.csv --image_dir=images/test --output_path=test.record
训练准备
在开始训练之前,你需要创建一个标签映射(label map)和训练配置文件。标签映射将ID映射到名称,而配置文件将定义模型的超参数。
4. 典型生态项目
TensorFlow Object Detection API拥有一个活跃的开源社区,以下是一些典型的生态项目:
- TensorFlow Lite: 用于移动和嵌入式设备的轻量级TensorFlow版本,可以部署经过训练的对象检测模型。
- TensorBoard: 用于可视化训练过程和结果的工具。
- Model Zoo: 一个包含预训练模型和配置文件的集合,可供用户直接使用或作为起点进行自定义训练。
通过上述步骤,你可以开始构建和训练自己的对象检测模型。遵循这些最佳实践,你将能够高效地利用TensorFlow Object Detection API进行开发。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01