KServe项目中的LLM推理自动伸缩方案:基于KEDA的原生集成
2025-06-16 09:07:45作者:史锋燃Gardner
在当今AI应用快速发展的背景下,大型语言模型(LLM)的推理服务面临着独特的伸缩性挑战。传统的基于请求级别的自动伸缩策略往往难以满足LLM推理的特殊需求,这促使KServe社区提出了与KEDA(Kubernetes Event-driven Autoscaling)的原生集成方案。
LLM推理的伸缩性挑战
LLM推理与传统服务最大的不同在于其计算特性。LLM推理是基于token级别的处理过程,而非简单的请求-响应模式。这种特性带来了几个关键指标:
- 首Token时间(TTFT):用户获得第一个响应token的等待时间
- 每Token处理时间(TPOT):生成每个输出token所需的时间
- 总体延迟:完整响应生成的总时间
- 吞吐量:系统每秒能处理的token总数
- 能耗指标:模型推理过程中的资源消耗情况
这些指标直接关系到用户体验和系统效率,但传统的Knative自动伸缩机制无法基于这些细粒度指标进行决策。
KEDA集成方案设计
KServe提出的解决方案是通过原生集成KEDA来实现更精细化的自动伸缩控制。KEDA作为Kubernetes的事件驱动自动伸缩控制器,特别适合处理基于自定义指标的伸缩场景。
技术实现要点
- Prometheus指标支持:KEDA可以直接查询Prometheus中的自定义指标,如token吞吐量、能耗等
- 双模式支持:同时支持Serverless和Raw Deployment两种部署模式
- 声明式配置:通过InferenceService CRD扩展,用户可以直观地定义伸缩策略
配置示例
用户可以通过简单的YAML配置定义自动伸缩行为:
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
spec:
predictor:
scaleQuery: "average_token_throughput_per_second[1m]"
scaleMetric: custom
maxReplicas: 10
minReplicas: 1
底层会自动生成对应的KEDA ScaledObject资源,实现基于指定指标的自动伸缩。
技术优势与价值
- 精细化控制:基于token级别的指标进行伸缩,更符合LLM推理特性
- 能效优化:结合Kepler的能耗指标,实现绿色计算
- 灵活性:支持多种自定义指标,适应不同场景需求
- 无缝集成:作为KServe原生功能,无需额外组件部署
未来展望
随着该功能的正式发布,LLM推理服务将能够实现更智能的资源分配和更高效的计算利用率。社区也在探索更多高级特性,如动态批处理大小调整等,以进一步提升系统性能。
这一创新为生产环境中的LLM服务部署提供了关键的基础设施支持,特别是在资源受限但需求波动的场景下,能够显著提升服务质量和成本效益。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133