KServe项目中的LLM推理自动伸缩方案:基于KEDA的原生集成
2025-06-16 00:16:28作者:史锋燃Gardner
在当今AI应用快速发展的背景下,大型语言模型(LLM)的推理服务面临着独特的伸缩性挑战。传统的基于请求级别的自动伸缩策略往往难以满足LLM推理的特殊需求,这促使KServe社区提出了与KEDA(Kubernetes Event-driven Autoscaling)的原生集成方案。
LLM推理的伸缩性挑战
LLM推理与传统服务最大的不同在于其计算特性。LLM推理是基于token级别的处理过程,而非简单的请求-响应模式。这种特性带来了几个关键指标:
- 首Token时间(TTFT):用户获得第一个响应token的等待时间
- 每Token处理时间(TPOT):生成每个输出token所需的时间
- 总体延迟:完整响应生成的总时间
- 吞吐量:系统每秒能处理的token总数
- 能耗指标:模型推理过程中的资源消耗情况
这些指标直接关系到用户体验和系统效率,但传统的Knative自动伸缩机制无法基于这些细粒度指标进行决策。
KEDA集成方案设计
KServe提出的解决方案是通过原生集成KEDA来实现更精细化的自动伸缩控制。KEDA作为Kubernetes的事件驱动自动伸缩控制器,特别适合处理基于自定义指标的伸缩场景。
技术实现要点
- Prometheus指标支持:KEDA可以直接查询Prometheus中的自定义指标,如token吞吐量、能耗等
- 双模式支持:同时支持Serverless和Raw Deployment两种部署模式
- 声明式配置:通过InferenceService CRD扩展,用户可以直观地定义伸缩策略
配置示例
用户可以通过简单的YAML配置定义自动伸缩行为:
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
spec:
predictor:
scaleQuery: "average_token_throughput_per_second[1m]"
scaleMetric: custom
maxReplicas: 10
minReplicas: 1
底层会自动生成对应的KEDA ScaledObject资源,实现基于指定指标的自动伸缩。
技术优势与价值
- 精细化控制:基于token级别的指标进行伸缩,更符合LLM推理特性
- 能效优化:结合Kepler的能耗指标,实现绿色计算
- 灵活性:支持多种自定义指标,适应不同场景需求
- 无缝集成:作为KServe原生功能,无需额外组件部署
未来展望
随着该功能的正式发布,LLM推理服务将能够实现更智能的资源分配和更高效的计算利用率。社区也在探索更多高级特性,如动态批处理大小调整等,以进一步提升系统性能。
这一创新为生产环境中的LLM服务部署提供了关键的基础设施支持,特别是在资源受限但需求波动的场景下,能够显著提升服务质量和成本效益。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248