ktransformers项目NUMA模式内存占用问题分析与解决方案
2025-05-16 07:25:31作者:冯爽妲Honey
背景介绍
在大型语言模型推理领域,ktransformers项目提供了一个高效的本地聊天实现方案。该项目支持多种运行模式,其中NUMA(Non-Uniform Memory Access)模式是针对多路CPU服务器的优化方案,能够显著提升多处理器环境下的性能表现。
问题现象
用户在使用双路EPYC 7742服务器(共128个核心)运行8bit量化的DeepSeek-V3模型时,发现NUMA模式无法正常工作。具体表现为:
- 非NUMA模式下,模型可以正常运行,CPU内存占用约19GB,推理速度达到4.5 tokens/s
- 启用NUMA模式后,系统内存被迅速耗尽(1TB内存+8GB交换空间),进程被系统终止
技术分析
NUMA模式的工作原理
NUMA模式在多路CPU系统中会将模型数据复制到每个NUMA节点(通常对应每个CPU插槽)的本地内存中。这种设计带来了两个关键特性:
- 内存访问优化:每个CPU核心访问本地内存的速度显著快于访问远程内存
- 内存消耗倍增:模型数据会在每个NUMA节点保存完整副本
内存需求计算
以DeepSeek-V3的8bit量化模型为例:
- 单份模型内存占用:约713GB
- 双路系统NUMA模式内存需求:713GB × 2 = 1426GB
用户配置的1TB物理内存显然无法满足需求,导致系统因内存耗尽而终止进程。
解决方案
针对这一问题,我们建议采取以下措施:
1. 增加物理内存
对于双路系统运行大型模型:
- 建议配置至少1.5TB物理内存
- 理想情况下应达到2TB以确保稳定运行
2. 优化模型选择
- 考虑使用更低精度的量化模型(如4bit)
- 评估模型大小与业务需求的平衡点
3. 系统配置调整
- 增加交换空间(临时解决方案)
- 调整NUMA内存分配策略(需谨慎操作)
最佳实践建议
- 容量规划:部署前精确计算模型内存需求,考虑NUMA复制因素
- 监控机制:实施内存使用监控,预防OOM(Out Of Memory)事件
- 渐进式测试:从小模型开始测试,逐步升级到目标模型
总结
NUMA模式虽然能提升多路系统的性能,但其内存复制机制会显著增加总内存需求。用户在使用前必须充分评估硬件资源是否满足要求,特别是对于大型语言模型场景。正确的容量规划和配置是确保系统稳定运行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869