3D-Speaker项目中Cam++模型测试结果差异分析
2025-07-06 19:41:03作者:田桥桑Industrious
模型测试结果差异现象
在3D-Speaker项目中使用Cam++声纹识别模型进行测试时,研究人员发现实际测试结果与报告结果存在差异。具体表现为:
- 在CN-Celeb测试集上,使用200k说话人数据集训练的Cam++模型报告EER为4.32%,但实际测试得到4.70%的EER
- 在3D-Speaker测试集上,同源模型(使用3D-Speaker训练集训练)测试结果与报告一致
- 跨数据集测试时(200k模型在3D-Speaker测试集),EER显著升高
差异原因分析
注册音频处理方式的影响
对于CN-Celeb测试集上EER差异,主要原因是注册音频的处理方式不同:
- 拼接法:将多个注册音频拼接后提取单个embedding,会导致EER偏高(4.70%)
- 平均法:对每个注册音频单独提取embedding后取平均,可获得更优结果(4.32%)
这种差异反映了声纹识别系统中注册策略的重要性。平均法能更好地捕捉说话人的整体特征,而拼接法可能引入不必要的声学变化。
数据集同源性的影响
跨数据集测试性能下降的现象验证了声纹识别领域的一个重要规律:
- 同源测试:当训练集和测试集来自相同数据分布时,模型性能稳定
- 非同源测试:训练集未包含测试集数据时,性能会显著下降
200k说话人模型未使用3D-Speaker训练集数据,因此在3D-Speaker测试集上表现不佳,这符合声纹识别模型的预期行为。
技术启示
- 注册策略选择:在实际应用中应优先考虑embedding平均法而非音频拼接法
- 数据一致性:模型性能评估需考虑训练集与测试集的同源性
- 模型部署:选择与目标场景数据分布匹配的预训练模型
- 性能对比:不同论文间的结果比较需确认测试条件是否一致
这些发现对于声纹识别系统的实际部署和性能评估具有重要指导意义。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217