Apache OpenWhisk部署中ElasticSearch与Scheduler服务配置问题解析
部署环境准备
在Apache OpenWhisk的部署过程中,使用Ansible进行自动化部署是最常见的方式之一。当在Ubuntu 18.04系统上执行ansible-playbook -i environments/local openwhisk.yml命令时,可能会遇到控制器(Controller)和调度器(Scheduler)服务启动失败的问题。
典型错误现象
部署过程中常见的错误主要包括两类:
-
控制器服务预热失败:表现为HTTP 404错误,提示请求的资源不存在,具体是
/api/v1/namespaces/_/actions/invokerHealthTestAction0端点无法访问。 -
调度器服务启动失败:表现为连接被拒绝,调度器的健康检查端点
/ping无法响应,同时调度器容器日志中会显示ElasticSearch相关的配置错误。
问题根源分析
这些问题的根本原因在于OpenWhisk的默认配置与实际的部署环境不匹配:
-
ElasticSearch激活存储配置缺失:OpenWhisk默认配置了ElasticSearch作为激活存储后端,但部署时没有提供必要的ElasticSearch连接参数,导致调度器服务启动失败。
-
服务依赖关系:调度器服务依赖于控制器服务的正常运行,而控制器服务又依赖于数据库服务的正确配置,形成了一个复杂的依赖链。
解决方案
方案一:配置ElasticSearch
如果确实需要使用ElasticSearch作为激活存储,需要在Ansible的配置文件中添加以下参数:
db_activation_backend: ElasticSearch
elastic_cluster_name: <集群名称>
elastic_protocol: <协议类型>
elastic_index_pattern: <索引模式>
elastic_base_volume: <数据卷目录>
elastic_username: <用户名>
elastic_password: <密码>
这些配置项需要根据实际的ElasticSearch集群情况进行设置。
方案二:使用替代方案
如果不需要ElasticSearch功能,可以采用以下替代方案:
-
修改参考配置:在
common/scala/src/main/resources/reference.conf文件中,将ElasticSearchDurationCheckerProvider替换为NoopDurationCheckerProvider。 -
确保正确实现:注意不要混淆
NoopDurationCheckerProvider和NoopDurationChecker,错误的实现会导致类型转换异常。 -
验证服务状态:修改配置后,应该能够看到调度器服务正常启动,Ansible部署过程顺利完成。
部署后验证
成功部署后,需要注意以下几点:
-
CLI配置:使用
wsk命令行工具时,正确的API端点应该是https://localhost,而不是standalone模式下的端口。 -
HTTPS支持:由于默认使用自签名证书,需要添加
-i参数忽略证书验证:wsk list -i。 -
服务检查:可以通过
docker ps命令确认所有容器都正常运行,包括CouchDB、Kafka、Zookeeper、etcd等依赖服务。
经验总结
-
配置一致性:确保所有服务的配置参数一致,特别是数据库后端的选择和相关参数。
-
日志分析:遇到问题时,首先查看相关容器的日志,通常能快速定位问题原因。
-
依赖管理:理解OpenWhisk各组件之间的依赖关系,有助于快速排查部署问题。
-
环境隔离:建议在干净的测试环境中进行部署验证,避免已有服务造成端口冲突等问题。
通过以上分析和解决方案,可以顺利完成Apache OpenWhisk的部署工作,为后续的函数计算服务开发和测试奠定基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00