NeoRL 项目使用教程
2024-09-25 10:11:13作者:苗圣禹Peter
1. 项目介绍
NeoRL(Near Real-World Benchmark for Offline Reinforcement Learning)是一个用于离线强化学习(Offline Reinforcement Learning)的基准数据集接口。该项目提供了从多个开源环境中收集的数据集,包括 CityLearn、FinRL、IB 和 Gym-MuJoCo 任务。NeoRL 使用 SAC(Soft Actor-Critic)算法在这些领域上进行训练,并生成不同质量级别的数据集,以模拟真实世界中的操作错误。
NeoRL 项目的主要目标是提供一个接近真实世界的离线强化学习基准,帮助研究人员和开发者测试和验证他们的算法。项目支持多种环境,并提供了详细的文档和示例代码,方便用户快速上手。
2. 项目快速启动
安装 NeoRL 接口
首先,克隆 NeoRL 项目的 GitHub 仓库:
git clone https://github.com/polixir/NeoRL.git
cd NeoRL
然后,安装 NeoRL 接口:
pip install -e .
使用示例
以下是一个简单的使用示例,展示如何创建一个环境并获取数据集:
import neorl
# 创建一个 CityLearn 环境
env = neorl.make("citylearn")
# 重置环境
env.reset()
# 执行一步动作
env.step(env.action_space.sample())
# 获取 100 个低级策略收集的轨迹数据
train_data, val_data = env.get_dataset(data_type="low", train_num=100)
3. 应用案例和最佳实践
应用案例
NeoRL 可以应用于多个领域,例如:
- 智能城市:使用 CityLearn 数据集进行城市能源管理优化。
- 金融交易:使用 FinRL 数据集进行自动化股票交易策略的开发。
- 工业控制:使用 IB 数据集进行工业控制问题的模拟和优化。
最佳实践
- 数据预处理:在使用 NeoRL 数据集之前,建议对数据进行预处理,以确保数据质量和一致性。
- 模型训练:使用 SAC 或其他强化学习算法进行模型训练时,建议使用交叉验证来评估模型的性能。
- 结果分析:在训练完成后,使用 NeoRL 提供的工具进行结果分析,以评估模型的实际效果。
4. 典型生态项目
NeoRL 项目与其他几个开源项目紧密结合,形成了一个完整的生态系统:
- OfflineRL:用于训练离线强化学习算法的项目。
- d3pe:用于离线强化学习算法的评估工具。
这些项目共同构成了一个强大的工具集,帮助研究人员和开发者更好地理解和应用离线强化学习技术。
通过本教程,您应该能够快速上手 NeoRL 项目,并了解其在不同领域的应用和最佳实践。希望 NeoRL 能够为您的研究和开发工作提供有力的支持!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19