NeoRL 项目使用教程
2024-09-25 07:35:11作者:苗圣禹Peter
1. 项目介绍
NeoRL(Near Real-World Benchmark for Offline Reinforcement Learning)是一个用于离线强化学习(Offline Reinforcement Learning)的基准数据集接口。该项目提供了从多个开源环境中收集的数据集,包括 CityLearn、FinRL、IB 和 Gym-MuJoCo 任务。NeoRL 使用 SAC(Soft Actor-Critic)算法在这些领域上进行训练,并生成不同质量级别的数据集,以模拟真实世界中的操作错误。
NeoRL 项目的主要目标是提供一个接近真实世界的离线强化学习基准,帮助研究人员和开发者测试和验证他们的算法。项目支持多种环境,并提供了详细的文档和示例代码,方便用户快速上手。
2. 项目快速启动
安装 NeoRL 接口
首先,克隆 NeoRL 项目的 GitHub 仓库:
git clone https://github.com/polixir/NeoRL.git
cd NeoRL
然后,安装 NeoRL 接口:
pip install -e .
使用示例
以下是一个简单的使用示例,展示如何创建一个环境并获取数据集:
import neorl
# 创建一个 CityLearn 环境
env = neorl.make("citylearn")
# 重置环境
env.reset()
# 执行一步动作
env.step(env.action_space.sample())
# 获取 100 个低级策略收集的轨迹数据
train_data, val_data = env.get_dataset(data_type="low", train_num=100)
3. 应用案例和最佳实践
应用案例
NeoRL 可以应用于多个领域,例如:
- 智能城市:使用 CityLearn 数据集进行城市能源管理优化。
- 金融交易:使用 FinRL 数据集进行自动化股票交易策略的开发。
- 工业控制:使用 IB 数据集进行工业控制问题的模拟和优化。
最佳实践
- 数据预处理:在使用 NeoRL 数据集之前,建议对数据进行预处理,以确保数据质量和一致性。
- 模型训练:使用 SAC 或其他强化学习算法进行模型训练时,建议使用交叉验证来评估模型的性能。
- 结果分析:在训练完成后,使用 NeoRL 提供的工具进行结果分析,以评估模型的实际效果。
4. 典型生态项目
NeoRL 项目与其他几个开源项目紧密结合,形成了一个完整的生态系统:
- OfflineRL:用于训练离线强化学习算法的项目。
- d3pe:用于离线强化学习算法的评估工具。
这些项目共同构成了一个强大的工具集,帮助研究人员和开发者更好地理解和应用离线强化学习技术。
通过本教程,您应该能够快速上手 NeoRL 项目,并了解其在不同领域的应用和最佳实践。希望 NeoRL 能够为您的研究和开发工作提供有力的支持!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1