Rime-ice 实现中英混合词汇自动造词的技术方案
2025-05-21 02:25:47作者:余洋婵Anita
背景介绍
Rime输入法引擎以其高度可定制性著称,而rime-ice作为其优秀配置方案之一,为用户提供了开箱即用的输入体验。在实际使用中,用户经常需要输入中英混合的词汇(如"老ass"、"VIP会员"等),但默认配置下rime-ice无法自动将这些混合词汇加入用户词典。本文将详细介绍如何通过Lua脚本扩展实现这一功能。
技术原理
传统Rime输入法处理中英混合输入时存在两个主要限制:
- 中文方案通常不会将包含字母的词汇加入用户词典
- 英文方案默认关闭用户词典功能
解决方案的核心思路是:
- 利用Lua脚本监听用户提交的文本
- 检测文本中是否包含中英混合内容
- 将符合条件的词汇写入英文方案的用户词典
- 通过自定义编码实现混合词汇的快速输入
实现步骤
1. 准备Lua脚本
创建cn_en_filter.lua文件,内容如下:
-- cn_en_filter.lua
-- 将上屏的中英混合词汇写入词典
-- 英文方案(主方案、副方案)的用户词典需要打开
local F = {}
function F.init( env )
local config = env.engine.schema.config
local schema = config:get_string( 'en_schema' ) or 'melt_eng'
F.en_dict = Memory( env.engine, Schema( schema ) )
if F.en_dict then
env.commit_notifier = env.engine.context.commit_notifier:connect(
function( ctx )
local commit_text = ctx:get_commit_text()
if utf8.len( commit_text ) ~= #commit_text and commit_text:find( '%a' ) then
local commit_text_en = commit_text:match( '%a+' )
local commit_code = ctx.input
if commit_code:find( commit_text_en ) then
F.update_dict_entry( commit_text, ctx.input )
end
else
return
end
end
)
end
end
function F.update_dict_entry( text, code )
if #text == 0 then return end
local e = DictEntry()
e.text = text
e.custom_code = code .. ' '
F.en_dict:update_userdict( e, 1, '' )
end
function F.func( input, env ) for cand in input:iter() do yield( cand ) end end
function F.fina( env ) if F.en_dict then env.commit_notifier:disconnect() end end
return F
2. 修改配置文件
在rime-ice的配置文件中进行以下调整:
- 确保英文方案的用户词典功能已开启
- 在中文方案的过滤器中添加Lua过滤器
示例配置片段:
# 在中文方案的配置中
filters:
- lua_filter@*cn_en_filter
- uniquifier
en_schema: melt_eng
# 在英文方案的配置中
melt_eng/+:
enable_user_dict: true
3. 部署应用
完成配置修改后,重新部署Rime输入法即可生效。
功能特点
- 智能检测:自动识别包含字母的中英混合词汇
- 编码保留:记录用户输入时的完整编码,便于后续输入
- 无缝集成:与现有输入流程完美融合,不影响其他功能
- 性能优化:仅在检测到混合词汇时才进行词典更新操作
使用示例
以输入"老ass"为例:
- 首次输入时通过全拼或双拼逐字选择
- 脚本自动将"老ass"加入用户词典,并记录输入编码(如双拼的"lc ass")
- 后续输入时可直接通过编码"lc ass"快速输入该词汇
注意事项
- 确保英文方案的用户词典功能已开启
- 脚本需要放置在正确的Lua脚本目录下
- 不同Rime版本可能需要微调脚本实现
- 大量混合词汇可能会增加用户词典体积
总结
通过这个Lua脚本扩展,rime-ice实现了中英混合词汇的自动学习功能,大大提升了输入效率。这种方案展示了Rime输入法强大的可扩展性,用户可以根据自身需求灵活定制输入体验。对于经常需要输入专业术语、网络用语等混合内容的用户来说,这一功能尤为重要。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869