UDLBook项目中的Nesterov动量优化器公式修正探讨
引言
在深度学习优化算法中,动量方法(Momentum)及其改进版本Nesterov动量是广泛使用的优化技术。UDLBook作为一本权威的深度学习教材,其第一版中关于Nesterov动量优化器的公式表述引起了读者的讨论和思考。
原始公式分析
UDLBook第一版中的公式6.12描述了Nesterov动量优化器的更新过程。该公式分为两个部分:
-
动量更新部分:
-
参数更新部分:
其中,表示第t步的参数,是动量项,是学习率,是动量系数,是当前batch,是第i个样本的损失函数。
问题发现
细心的读者nickzooot指出,按照Nesterov动量的原始思想,在计算梯度时应该使用"前瞻位置",而不是。这是因为Nesterov动量的核心思想是先沿着动量方向迈出一大步,然后在这个"前瞻位置"计算梯度进行修正。
技术验证
为了验证这一观点,我们可以将整个Nesterov动量更新过程合并为一个公式:
从这个合并后的公式可以更清楚地看出,Nesterov动量实际上是:
- 先沿着动量方向迈出的一步
- 在这个新位置计算梯度
- 用这个梯度进行的修正
修正方案
基于上述分析,作者Simon Prince确认了读者的观点是正确的,并在最新版本中进行了修正。修正后的动量更新部分应为:
实际影响
虽然这一修正从理论上看更加准确,但在实际应用中,由于学习率通常较小,且动量系数接近1,两者的差异与在实际效果上差别不大。不过,对于追求理论严谨性的教材来说,这样的修正是必要且有价值的。
总结
这个案例展示了深度学习领域中理论与实践相结合的重要性。UDLBook作为权威教材,能够及时采纳读者建议进行修正,体现了学术严谨性。同时,这也提醒我们在学习优化算法时,不仅要理解公式的表面形式,更要深入理解其背后的数学原理和物理意义。
Nesterov动量作为经典动量方法的改进版,其核心思想是通过"前瞻"来获得更准确的梯度估计,从而在某些情况下获得更快的收敛速度。这种对优化算法细节的关注,正是深度学习研究不断进步的动力之一。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0106Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









