UDLBook项目中的Nesterov动量优化器公式修正探讨
引言
在深度学习优化算法中,动量方法(Momentum)及其改进版本Nesterov动量是广泛使用的优化技术。UDLBook作为一本权威的深度学习教材,其第一版中关于Nesterov动量优化器的公式表述引起了读者的讨论和思考。
原始公式分析
UDLBook第一版中的公式6.12描述了Nesterov动量优化器的更新过程。该公式分为两个部分:
-
动量更新部分:
-
参数更新部分:
其中,表示第t步的参数,是动量项,是学习率,是动量系数,是当前batch,是第i个样本的损失函数。
问题发现
细心的读者nickzooot指出,按照Nesterov动量的原始思想,在计算梯度时应该使用"前瞻位置",而不是。这是因为Nesterov动量的核心思想是先沿着动量方向迈出一大步,然后在这个"前瞻位置"计算梯度进行修正。
技术验证
为了验证这一观点,我们可以将整个Nesterov动量更新过程合并为一个公式:
从这个合并后的公式可以更清楚地看出,Nesterov动量实际上是:
- 先沿着动量方向迈出的一步
- 在这个新位置计算梯度
- 用这个梯度进行的修正
修正方案
基于上述分析,作者Simon Prince确认了读者的观点是正确的,并在最新版本中进行了修正。修正后的动量更新部分应为:
实际影响
虽然这一修正从理论上看更加准确,但在实际应用中,由于学习率通常较小,且动量系数接近1,两者的差异与在实际效果上差别不大。不过,对于追求理论严谨性的教材来说,这样的修正是必要且有价值的。
总结
这个案例展示了深度学习领域中理论与实践相结合的重要性。UDLBook作为权威教材,能够及时采纳读者建议进行修正,体现了学术严谨性。同时,这也提醒我们在学习优化算法时,不仅要理解公式的表面形式,更要深入理解其背后的数学原理和物理意义。
Nesterov动量作为经典动量方法的改进版,其核心思想是通过"前瞻"来获得更准确的梯度估计,从而在某些情况下获得更快的收敛速度。这种对优化算法细节的关注,正是深度学习研究不断进步的动力之一。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00