Compose Destinations 库中 ResultRecipientImpl 的生命周期处理优化
2025-06-25 08:20:30作者:董灵辛Dennis
Compose Destinations 是一个用于 Jetpack Compose 的导航库,它简化了导航和参数传递的过程。最近在版本 2.2.0 中,该库对 ResultRecipientImpl 的生命周期处理进行了重要优化,解决了在某些特定场景下结果过早传递的问题。
问题背景
在原始实现中,ResultRecipientImpl 的 onNavResult 方法会在 ON_START 生命周期阶段处理结果。这种设计在大多数情况下工作良好,但在某些特殊场景下会导致问题:
- 当父屏幕打开一个底部表单(BottomSheet)时
- 用户在底部表单中操作数据并通过 resultNavigator.setResult() 发送结果
- 如果用户将应用置于后台后再恢复,父屏幕会在 ON_START 阶段接收到结果
- 这导致当用户真正关闭底部表单时,结果已经被消费而无法再次传递
技术分析
问题的核心在于生命周期阶段的选择。ON_START 阶段在某些情况下(如底部表单或对话框覆盖时)会被触发,而 ON_RESUME 则不会。这导致了结果在不恰当的时机被消费。
原始实现选择 ON_START 的原因是为了兼容一些特殊目的地类型(如对话框和底部表单),在这些情况下 ON_RESUME 可能不会被触发。
解决方案
Compose Destinations 2.2.0 版本引入了更灵活的生命周期处理策略:
- 保留了原有的 ON_FIRST_OPPORTUNITY 默认行为(在 ON_START 或 ON_RESUME 中处理,以先触发的为准)
- 新增了 ON_RESUME 选项,开发者可以根据需要选择只在 ON_RESUME 阶段处理结果
这种设计既保持了向后兼容性,又为特定场景提供了更精确的控制。
实际应用
对于需要精确控制结果传递时机的场景(如底部表单或对话框),开发者现在可以:
onNavResult(
navBackStackEntry = navBackStackEntry,
lifecycleOwner = lifecycleOwner,
resultRecipient = resultRecipient,
lifecycleState = Lifecycle.State.RESUMED
) { result ->
// 处理结果
}
这种配置确保了结果只在屏幕真正恢复时被处理,避免了应用从后台恢复时的意外结果消费。
总结
Compose Destinations 的这次更新展示了良好的API设计理念:
- 保持向后兼容性
- 为特殊场景提供扩展点
- 让开发者能够根据具体需求选择最适合的行为
对于使用底部表单或对话框等场景的开发者,建议评估是否需要使用新的 ON_RESUME 选项来获得更精确的结果处理时机控制。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K