Flash-Linear-Attention项目中的340M参数模型配置解析
2025-07-02 15:39:21作者:廉皓灿Ida
在Flash-Linear-Attention项目中,开发者提供了两种不同架构的340M参数规模模型配置:GLA(门控线性注意力)和RetNet(保留网络)。这两种配置都采用了现代高效注意力机制的优化设计,下面我们将详细分析它们的架构特点和技术细节。
GLA模型架构配置
GLA模型采用了门控线性注意力机制,其核心配置如下:
- 基础参数:隐藏层维度1024,24个隐藏层,每层4个注意力头
- 注意力机制:使用chunk模式的分块注意力,启用了门控键(GK)但未使用门控值(GV)
- 扩展因子:键向量扩展系数0.5,值向量扩展系数1
- 归一化:采用RMSNorm归一化,ε值为1e-6
- 激活函数:使用Swish激活函数
- 词嵌入:词汇表大小32000,绑定了输入输出词嵌入
- 位置编码:最大位置嵌入长度2048
- 优化技术:融合了交叉熵损失计算和归一化操作
RetNet模型架构配置
RetNet模型采用了保留网络架构,其配置特点包括:
- 基础参数:同样采用1024隐藏维度,24层结构,每层4个注意力头
- 注意力机制:使用chunk模式的分块注意力
- 扩展因子:键向量扩展系数1,值向量扩展系数2
- 归一化:同样使用RMSNorm归一化,ε值为1e-6
- 激活函数:Swish激活函数
- 词嵌入:词汇表大小32000,绑定了输入输出词嵌入
- 位置编码:最大位置嵌入长度2048
- 优化技术:同样融合了交叉熵损失计算和归一化操作
技术对比与分析
两种架构在整体规模上保持一致,但在关键设计上存在差异:
-
注意力机制扩展:GLA采用了更激进的键向量压缩(扩展系数0.5),而RetNet保持了键向量的原始维度(扩展系数1),但对值向量进行了更大扩展(系数2)
-
门控机制:GLA特有的门控键(GK)机制为其提供了动态调节注意力权重的能力,这是其与RetNet的主要区别之一
-
隐藏层比率:GLA采用了更大的隐藏层比率(4:1),而RetNet为2:1,这影响了中间层的维度设计
这两种配置都体现了现代高效Transformer架构的设计趋势:使用分块注意力(chunk模式)降低计算复杂度,采用RMSNorm替代传统LayerNorm,以及通过融合操作减少计算开销。Swish激活函数的使用也符合当前主流选择。
对于实际应用场景,GLA可能更适合需要动态注意力调节的任务,而RetNet则提供了更平衡的键值表示设计。开发者可以根据具体需求选择合适的架构。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1