Flash-Linear-Attention项目中的340M参数模型配置解析
2025-07-02 05:59:30作者:廉皓灿Ida
在Flash-Linear-Attention项目中,开发者提供了两种不同架构的340M参数规模模型配置:GLA(门控线性注意力)和RetNet(保留网络)。这两种配置都采用了现代高效注意力机制的优化设计,下面我们将详细分析它们的架构特点和技术细节。
GLA模型架构配置
GLA模型采用了门控线性注意力机制,其核心配置如下:
- 基础参数:隐藏层维度1024,24个隐藏层,每层4个注意力头
- 注意力机制:使用chunk模式的分块注意力,启用了门控键(GK)但未使用门控值(GV)
- 扩展因子:键向量扩展系数0.5,值向量扩展系数1
- 归一化:采用RMSNorm归一化,ε值为1e-6
- 激活函数:使用Swish激活函数
- 词嵌入:词汇表大小32000,绑定了输入输出词嵌入
- 位置编码:最大位置嵌入长度2048
- 优化技术:融合了交叉熵损失计算和归一化操作
RetNet模型架构配置
RetNet模型采用了保留网络架构,其配置特点包括:
- 基础参数:同样采用1024隐藏维度,24层结构,每层4个注意力头
- 注意力机制:使用chunk模式的分块注意力
- 扩展因子:键向量扩展系数1,值向量扩展系数2
- 归一化:同样使用RMSNorm归一化,ε值为1e-6
- 激活函数:Swish激活函数
- 词嵌入:词汇表大小32000,绑定了输入输出词嵌入
- 位置编码:最大位置嵌入长度2048
- 优化技术:同样融合了交叉熵损失计算和归一化操作
技术对比与分析
两种架构在整体规模上保持一致,但在关键设计上存在差异:
-
注意力机制扩展:GLA采用了更激进的键向量压缩(扩展系数0.5),而RetNet保持了键向量的原始维度(扩展系数1),但对值向量进行了更大扩展(系数2)
-
门控机制:GLA特有的门控键(GK)机制为其提供了动态调节注意力权重的能力,这是其与RetNet的主要区别之一
-
隐藏层比率:GLA采用了更大的隐藏层比率(4:1),而RetNet为2:1,这影响了中间层的维度设计
这两种配置都体现了现代高效Transformer架构的设计趋势:使用分块注意力(chunk模式)降低计算复杂度,采用RMSNorm替代传统LayerNorm,以及通过融合操作减少计算开销。Swish激活函数的使用也符合当前主流选择。
对于实际应用场景,GLA可能更适合需要动态注意力调节的任务,而RetNet则提供了更平衡的键值表示设计。开发者可以根据具体需求选择合适的架构。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178