RealSense ROS节点中Libusb错误导致崩溃问题的分析与解决
问题背景
在使用Intel RealSense D435i深度相机与ROS 2 Humble集成时,开发者遇到了一个棘手的问题:在频繁启用和禁用相机传感器后,ROS节点会随机崩溃并自动重启。这个问题在Jetson Orin AGX平台(Ubuntu 20.04.6 LTS)上尤为明显,表现为三种不同类型的libusb错误。
错误现象分析
系统日志中主要出现了三类libusb相关的错误信息:
-
线程冲突错误:
libusb: debug [libusb_handle_events_timeout_completed] another thread is doing event handling
,表明多个线程同时尝试处理USB事件。 -
传输取消错误:
libusb: debug [libusb_cancel_transfer] transfer 0xffff500027f8
,显示USB传输被意外取消。 -
传输失败错误:
libusb: debug [reap_for_handle] urb type=1 status=-2 transferred=0
,表示USB请求块(URB)传输失败。
这些错误通常伴随着大量control_transfer returned error, index: 768, error: Resource temporarily unavailable, number: 11
警告,表明USB控制传输频繁失败。
深入调查
通过一系列测试,我们发现了几个关键现象:
-
初始重置无效:添加
initial_reset:=true
参数无法解决问题。 -
内存使用正常:监控显示系统内存使用稳定,排除了内存泄漏的可能性。
-
连接方式影响:无论是通过USB集线器还是直接连接到Jetson的USB端口,问题都会出现,但直接连接时问题出现的时间稍晚。
-
动态配置触发问题:最关键的发现是,当在运行时动态启用/禁用传感器(如颜色、深度和点云)时,问题会更快出现;而如果所有传感器在节点启动时就启用,系统可以稳定运行更长时间。
根本原因
综合所有测试结果,问题的根本原因在于:
-
USB资源竞争:频繁的动态传感器启停导致libusb库内部状态不一致,特别是在多相机系统中,USB带宽和资源竞争加剧了这一问题。
-
线程安全问题:RealSense ROS节点内部的USB事件处理机制在动态配置时可能出现线程同步问题。
-
Jetson平台特性:Jetson Orin的USB控制器实现可能对频繁的USB设备重置和配置更改更为敏感。
解决方案
基于测试结果,我们推荐以下解决方案:
- 静态配置优先:尽可能在节点启动时通过参数文件静态配置所有需要的传感器流,避免运行时动态启停。例如:
color.enable: true
depth.enable: true
pointcloud.enable: true
-
减少配置变更频率:如果必须动态调整传感器配置,应尽量减少变更频率,并确保每次变更后有足够的稳定时间。
-
硬件连接优化:
- 优先使用主机自带的USB 3.0/3.1端口
- 避免使用USB集线器,特别是非供电型集线器
- 确保使用高质量的USB数据线
-
固件和软件更新:保持相机固件和RealSense SDK为最新版本,已知问题可能在更新版本中已修复。
实施建议
对于生产环境部署,建议:
-
在系统设计阶段就确定所有需要的传感器流,采用静态配置方式。
-
如果应用确实需要动态传感器管理,考虑以下策略:
- 实现"传感器预热"机制,避免快速连续启停
- 添加错误恢复逻辑,在检测到libusb错误时优雅地重启节点
- 监控系统日志中的USB警告,提前预警潜在问题
-
对于多相机系统,考虑错开各相机的初始化时间,减轻USB控制器的瞬时负载。
总结
RealSense ROS节点中的libusb错误问题通常源于USB资源管理和线程同步的复杂性,特别是在动态配置场景下。通过采用静态配置策略和优化硬件连接,可以显著提高系统稳定性。这一经验不仅适用于RealSense相机,对于其他USB设备密集型的ROS应用也有参考价值。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0299Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++068Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









