OpenBMB/OmniLMM项目中LoRA训练显存溢出问题分析与解决方案
问题背景
在OpenBMB/OmniLMM项目中使用8块A100(80G)GPU进行LoRA微调训练时,开发者遇到了一个典型的显存溢出(OOM)问题。具体表现为训练过程中每50步就会出现CUDA显存不足的错误,导致训练中断。这个问题特别值得关注,因为它发生在高端硬件配置环境下,说明不是简单的硬件资源不足问题。
现象分析
从错误日志可以看出,虽然使用了8块80GB显存的A100 GPU,但在第50步训练时,GPU6的显存几乎被完全占用(79.12GiB在使用中,仅剩15.31MiB空闲)。PyTorch报告尝试分配320MiB显存失败,这表明存在显存管理问题而非简单的显存容量不足。
根本原因
经过技术分析,发现这个问题主要由两个因素共同导致:
-
验证阶段显存激增:项目中的评估(eval)实现存在优化不足的问题,在训练过程中执行验证时会显著增加显存使用量。这种激增在常规训练中可能不明显,但在大模型微调场景下会变得尤为突出。
-
显存碎片化:PyTorch的显存管理机制在长时间训练后可能出现碎片化问题,特别是当模型较大、计算图复杂时。错误日志中提到的"reserved but unallocated memory"(683.81MiB)就是碎片化的表现。
解决方案
针对这个问题,我们推荐以下解决方案:
-
调整验证频率:将eval_steps参数设置为一个非常大的值(如10000),避免在训练过程中频繁执行验证。可以在训练完成后单独进行模型评估。
-
优化显存管理:在训练脚本中添加PyTorch的显存碎片整理配置:
import torch torch.cuda.set_per_process_memory_fraction(0.9) # 保留10%显存余量
-
梯度累积调整:虽然当前batch_size=1且gradient_accumulation_steps=8的配置是合理的,但在出现OOM时可以尝试进一步增加累积步数,减少同时处理的样本数。
-
混合精度训练:确保启用了AMP(自动混合精度)训练,这可以显著减少显存使用量。
最佳实践建议
对于大模型微调任务,我们还建议:
- 在训练前使用
torch.cuda.empty_cache()
清空显存缓存 - 监控显存使用情况,设置合理的
max_split_size_mb
参数 - 考虑使用梯度检查点技术(gradient checkpointing)来进一步节省显存
- 对于特别大的模型,可以采用参数分片(parameter sharding)技术
总结
OpenBMB/OmniLMM项目中遇到的这个显存溢出问题,反映了大型语言模型微调过程中的典型挑战。通过合理配置训练参数、优化评估策略以及调整显存管理设置,可以有效解决这类问题。这些经验对于其他大模型训练任务也具有参考价值,特别是在资源受限环境下进行模型微调时。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









