JumpProcesses.jl教程:简单泊松过程模拟详解
2025-06-04 16:07:09作者:段琳惟
引言
在科学计算和系统建模中,泊松过程是一类重要的随机过程,广泛应用于物理、生物、金融等领域。本文将介绍如何使用JumpProcesses.jl库来模拟不同类型的泊松跳跃过程。JumpProcesses.jl是SciML生态系统中的一部分,专门用于模拟跳跃过程和混合跳跃-微分方程系统。
准备工作
首先需要安装必要的包并导入:
using JumpProcesses, Plots
default(; lw=2)
常速率泊松过程
基本计数过程
最简单的泊松过程是计数过程N(t),具有恒定的转移速率λ。这可以解释为一个出生过程,新个体以恒定速率λ产生。
数学表示为: N(t) = Y_b(λt),其中Y_b是单位泊松计数过程。
代码实现:
rate(u, p, t) = p.λ
affect!(integrator) = (integrator.u[1] += 1)
crj = ConstantRateJump(rate, affect!)
u₀ = [0]
p = (λ=2.0,)
tspan = (0.0, 10.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label="N(t)", xlabel="t", legend=:bottomright)
带死亡的出生过程
扩展模型,加入死亡过程:
deathrate(u, p, t) = p.μ * u[1]
deathaffect!(integrator) = (integrator.u[1] -= 1; integrator.u[2] += 1)
deathcrj = ConstantRateJump(deathrate, deathaffect!)
p = (λ=2.0, μ=1.5)
u₀ = [0, 0] # (N(0), D(0))
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj, deathcrj)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
变速率泊松过程
当转移速率不是常数时,需要使用VariableRateJump。例如,考虑周期性变化的出生率:
rate1(u, p, t) = p.λ * (sin(π*t/2) + 1)
affect1!(integrator) = (integrator.u[1] += 1)
# 定义速率边界
rateinterval(u, p, t) = typemax(t)
urate(u, p, t) = 2*p.λ
lrate(u, p, t) = p.λ
# 创建有界VariableRateJump
vrj1 = VariableRateJump(rate1, affect1!; lrate, urate, rateinterval)
# 定义依赖图
dep_graph = [[1], [1, 2]]
jprob = JumpProblem(dprob, Coevolve(), vrj1, deathcrj; dep_graph)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
一般变速率跳跃过程
当无法确定速率边界时,需要使用一般VariableRateJump并结合ODE求解器:
using OrdinaryDiffEq
function f!(du, u, p, t)
du .= 0
nothing
end
vrj2 = VariableRateJump(rate1, affect1!)
deathvrj = VariableRateJump(deathrate, deathaffect!)
u₀ = [0.0, 0.0]
oprob = ODEProblem(f!, u₀, tspan, p)
jprob = JumpProblem(oprob, Direct(), vrj2, deathvrj)
sol = solve(jprob, Tsit5())
plot(sol, label=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
随机跳跃分布
模拟复合泊松过程G(t),其中跳跃大小随机:
rng = JumpProcesses.DEFAULT_RNG
rate3(u, p, t) = p.λ
affect3! = integrator -> let rng=rng
integrator.u[1] += 1
integrator.u[2] += rand(rng, (-1, 1))
nothing
end
crj = ConstantRateJump(rate3, affect3!)
u₀ = [0, 0]
p = (λ=1.0,)
tspan = (0.0, 100.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label=["N(t)" "G(t)"], xlabel="t")
总结
本文介绍了使用JumpProcesses.jl模拟各种泊松过程的方法,包括:
- 常速率泊松过程
- 变速率泊松过程
- 复合泊松过程
JumpProcesses.jl提供了灵活的工具来建模各种跳跃过程,可以与微分方程结合使用,适用于复杂的混合系统建模。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0