JumpProcesses.jl教程:简单泊松过程模拟详解
2025-06-04 17:35:45作者:段琳惟
引言
在科学计算和系统建模中,泊松过程是一类重要的随机过程,广泛应用于物理、生物、金融等领域。本文将介绍如何使用JumpProcesses.jl库来模拟不同类型的泊松跳跃过程。JumpProcesses.jl是SciML生态系统中的一部分,专门用于模拟跳跃过程和混合跳跃-微分方程系统。
准备工作
首先需要安装必要的包并导入:
using JumpProcesses, Plots
default(; lw=2)
常速率泊松过程
基本计数过程
最简单的泊松过程是计数过程N(t),具有恒定的转移速率λ。这可以解释为一个出生过程,新个体以恒定速率λ产生。
数学表示为: N(t) = Y_b(λt),其中Y_b是单位泊松计数过程。
代码实现:
rate(u, p, t) = p.λ
affect!(integrator) = (integrator.u[1] += 1)
crj = ConstantRateJump(rate, affect!)
u₀ = [0]
p = (λ=2.0,)
tspan = (0.0, 10.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label="N(t)", xlabel="t", legend=:bottomright)
带死亡的出生过程
扩展模型,加入死亡过程:
deathrate(u, p, t) = p.μ * u[1]
deathaffect!(integrator) = (integrator.u[1] -= 1; integrator.u[2] += 1)
deathcrj = ConstantRateJump(deathrate, deathaffect!)
p = (λ=2.0, μ=1.5)
u₀ = [0, 0] # (N(0), D(0))
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj, deathcrj)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
变速率泊松过程
当转移速率不是常数时,需要使用VariableRateJump。例如,考虑周期性变化的出生率:
rate1(u, p, t) = p.λ * (sin(π*t/2) + 1)
affect1!(integrator) = (integrator.u[1] += 1)
# 定义速率边界
rateinterval(u, p, t) = typemax(t)
urate(u, p, t) = 2*p.λ
lrate(u, p, t) = p.λ
# 创建有界VariableRateJump
vrj1 = VariableRateJump(rate1, affect1!; lrate, urate, rateinterval)
# 定义依赖图
dep_graph = [[1], [1, 2]]
jprob = JumpProblem(dprob, Coevolve(), vrj1, deathcrj; dep_graph)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
一般变速率跳跃过程
当无法确定速率边界时,需要使用一般VariableRateJump并结合ODE求解器:
using OrdinaryDiffEq
function f!(du, u, p, t)
du .= 0
nothing
end
vrj2 = VariableRateJump(rate1, affect1!)
deathvrj = VariableRateJump(deathrate, deathaffect!)
u₀ = [0.0, 0.0]
oprob = ODEProblem(f!, u₀, tspan, p)
jprob = JumpProblem(oprob, Direct(), vrj2, deathvrj)
sol = solve(jprob, Tsit5())
plot(sol, label=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
随机跳跃分布
模拟复合泊松过程G(t),其中跳跃大小随机:
rng = JumpProcesses.DEFAULT_RNG
rate3(u, p, t) = p.λ
affect3! = integrator -> let rng=rng
integrator.u[1] += 1
integrator.u[2] += rand(rng, (-1, 1))
nothing
end
crj = ConstantRateJump(rate3, affect3!)
u₀ = [0, 0]
p = (λ=1.0,)
tspan = (0.0, 100.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label=["N(t)" "G(t)"], xlabel="t")
总结
本文介绍了使用JumpProcesses.jl模拟各种泊松过程的方法,包括:
- 常速率泊松过程
- 变速率泊松过程
- 复合泊松过程
JumpProcesses.jl提供了灵活的工具来建模各种跳跃过程,可以与微分方程结合使用,适用于复杂的混合系统建模。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178