JumpProcesses.jl教程:简单泊松过程模拟详解
2025-06-04 21:11:31作者:段琳惟
引言
在科学计算和系统建模中,泊松过程是一类重要的随机过程,广泛应用于物理、生物、金融等领域。本文将介绍如何使用JumpProcesses.jl库来模拟不同类型的泊松跳跃过程。JumpProcesses.jl是SciML生态系统中的一部分,专门用于模拟跳跃过程和混合跳跃-微分方程系统。
准备工作
首先需要安装必要的包并导入:
using JumpProcesses, Plots
default(; lw=2)
常速率泊松过程
基本计数过程
最简单的泊松过程是计数过程N(t),具有恒定的转移速率λ。这可以解释为一个出生过程,新个体以恒定速率λ产生。
数学表示为: N(t) = Y_b(λt),其中Y_b是单位泊松计数过程。
代码实现:
rate(u, p, t) = p.λ
affect!(integrator) = (integrator.u[1] += 1)
crj = ConstantRateJump(rate, affect!)
u₀ = [0]
p = (λ=2.0,)
tspan = (0.0, 10.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label="N(t)", xlabel="t", legend=:bottomright)
带死亡的出生过程
扩展模型,加入死亡过程:
deathrate(u, p, t) = p.μ * u[1]
deathaffect!(integrator) = (integrator.u[1] -= 1; integrator.u[2] += 1)
deathcrj = ConstantRateJump(deathrate, deathaffect!)
p = (λ=2.0, μ=1.5)
u₀ = [0, 0] # (N(0), D(0))
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj, deathcrj)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
变速率泊松过程
当转移速率不是常数时,需要使用VariableRateJump。例如,考虑周期性变化的出生率:
rate1(u, p, t) = p.λ * (sin(π*t/2) + 1)
affect1!(integrator) = (integrator.u[1] += 1)
# 定义速率边界
rateinterval(u, p, t) = typemax(t)
urate(u, p, t) = 2*p.λ
lrate(u, p, t) = p.λ
# 创建有界VariableRateJump
vrj1 = VariableRateJump(rate1, affect1!; lrate, urate, rateinterval)
# 定义依赖图
dep_graph = [[1], [1, 2]]
jprob = JumpProblem(dprob, Coevolve(), vrj1, deathcrj; dep_graph)
sol = solve(jprob, SSAStepper())
plot(sol, labels=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
一般变速率跳跃过程
当无法确定速率边界时,需要使用一般VariableRateJump并结合ODE求解器:
using OrdinaryDiffEq
function f!(du, u, p, t)
du .= 0
nothing
end
vrj2 = VariableRateJump(rate1, affect1!)
deathvrj = VariableRateJump(deathrate, deathaffect!)
u₀ = [0.0, 0.0]
oprob = ODEProblem(f!, u₀, tspan, p)
jprob = JumpProblem(oprob, Direct(), vrj2, deathvrj)
sol = solve(jprob, Tsit5())
plot(sol, label=["N(t)" "D(t)"], xlabel="t", legend=:topleft)
随机跳跃分布
模拟复合泊松过程G(t),其中跳跃大小随机:
rng = JumpProcesses.DEFAULT_RNG
rate3(u, p, t) = p.λ
affect3! = integrator -> let rng=rng
integrator.u[1] += 1
integrator.u[2] += rand(rng, (-1, 1))
nothing
end
crj = ConstantRateJump(rate3, affect3!)
u₀ = [0, 0]
p = (λ=1.0,)
tspan = (0.0, 100.0)
dprob = DiscreteProblem(u₀, tspan, p)
jprob = JumpProblem(dprob, Direct(), crj)
sol = solve(jprob, SSAStepper())
plot(sol, label=["N(t)" "G(t)"], xlabel="t")
总结
本文介绍了使用JumpProcesses.jl模拟各种泊松过程的方法,包括:
- 常速率泊松过程
- 变速率泊松过程
- 复合泊松过程
JumpProcesses.jl提供了灵活的工具来建模各种跳跃过程,可以与微分方程结合使用,适用于复杂的混合系统建模。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660