使用JAX入门指南
项目介绍
本项目旨在提供一个便捷的入口以开始您的JAX、Flax及Haiku之旅。它包含了作者“使用JAX进行机器学习”系列教程——包括YouTube视频和Jupyter笔记本——以及在探索JAX生态系统过程中作者发现的有用资源。适合那些从NumPy背景转向JAX的新手,或对这个加速计算库感兴趣的学习者。项目遵循MIT许可协议,为想深入了解深度学习和机器学习领域的开发者准备。
项目快速启动
要迅速开始使用JAX,首先确保您的环境已经安装了JAX及其依赖。以下是在Python环境中快速安装JAX的基本步骤:
pip install jax jaxlib
之后,您可以利用JAX的基本功能。例如,创建一个数组并执行简单的数学运算:
import jax.numpy as jnp
# 创建一个JAX数组
array_example = jnp.array([1, 2, 3])
print("原始数组:", array_example)
# 进行操作,比如加法
result = array_example + 1
print("数组加一后的结果:", result)
请确保你的环境支持JAX所需的硬件加速器(如GPU或TPU),以充分利用其性能优势。
应用案例和最佳实践
在JAX中,最佳实践通常围绕着函数式编程和自动微分特性。下面展示了一个简单的神经网络训练示例,体现了JAX的高效和简洁性:
from jax import grad, jit, vmap
from jax.experimental.optimizers import adam
def model(params, inputs):
# 假定params定义了神经网络结构,此处简化处理
pass
def loss(params, inputs, targets):
predictions = model(params, inputs)
return jnp.mean((predictions - targets)**2)
def update(params, inputs, targets, lr=0.1):
grad_loss = grad(loss)(params, inputs, targets)
return params - lr * grad_loss
# 初始化参数等...
# 然后使用adam优化器进行更高效的迭代
opt_init, opt_update = adam(step_size=0.1)
state = opt_init(params)
for i in range(n_steps):
state = opt_update(i, grad_loss(state.params, inputs, targets), state)
if i % 100 == 0:
print(f'Step {i}: Loss = {loss(state.params, inputs, targets)}')
在这个案例中,我们展示了如何构建损失函数、应用梯度下降(这里使用ADAM优化器)来更新模型参数。
典型生态项目
JAX的生态不仅仅限于核心库,还包括Flax(用于构建可移植的机器学习模型)、Haiku(一个用于构建神经网络的库,强调模块化和可读性)以及Optax(一个优化器库)。这些项目使得开发复杂的机器学习系统变得更加高效和简单。
-
Flax 提供了一种灵活的方式来定义、编译和运行模型,非常适合现代深度学习研究。
-
Haiku 强调通过函数式API来定义模型,减少样板代码,提高代码的清晰度。
-
Optax 则专注于优化算法,使得实验不同的学习策略变得简单且高效。
通过结合使用这些工具,开发者可以构建高性能、易于维护的深度学习应用。
以上就是基于get-started-with-JAX项目的简要入门指南,涵盖了基础介绍、快速启动、一个简化的应用案例以及介绍了几个关键的生态项目。开始您的JAX探险之旅吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01