首页
/ Atomic Agents项目中的异步Instructor错误分析与解决方案

Atomic Agents项目中的异步Instructor错误分析与解决方案

2025-06-24 00:45:13作者:咎竹峻Karen

问题背景

在Atomic Agents项目中,开发者在运行Web-Search-Agent示例时遇到了一个与异步Instructor相关的验证错误。该错误主要出现在使用不同AI服务提供商(如Azure AI服务和Google AI服务)时,表现为Pydantic验证失败和协程未被正确等待的问题。

错误现象

核心错误信息显示为Pydantic验证错误,表明输入应该是一个有效的字典或BaseIOSchema实例,但实际接收到的是一个协程对象。同时系统提示协程'AsyncInstructor.create'从未被等待。这种错误通常发生在异步操作未被正确处理的情况下。

问题根源分析

经过深入分析,发现该问题主要由以下几个因素导致:

  1. 异步客户端使用不当:当使用Azure AI服务的AsyncAzure客户端时,没有正确处理异步操作流程,导致协程未被正确等待。

  2. 不同AI服务提供商的API差异:特别是Google AI服务的API实现方式与其他服务存在显著差异,导致标准参数传递方式不兼容。

  3. 模型参数传递冲突:Google AI服务要求模型在客户端初始化时设置,而不是在创建方法中传递,这与常规的使用模式不同。

解决方案

针对Azure AI服务

对于Azure AI服务,最简单的解决方案是避免使用异步客户端,转而使用标准客户端:

agent = BaseAgent(
    config=BaseAgentConfig(
        client=instructor.from_ai_service(ai_service.AzureClient(
            api_key=os.getenv("AZURE_API_KEY"),
            api_version=os.getenv("API_VERSION"),
            azure_endpoint=os.getenv("AZURE_ENDPOINT"),
        )),
        model="gpt-4o",
        memory=memory,
    )
)

针对Google AI服务

对于Google AI服务,有两种可行的解决方案:

方案一:使用原生API

from google import generativeai as genai
from googleapiclient._auth import HAS_GOOGLE_AUTH

genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel(model_name='models/gemini-pro')
gemini = HAS_GOOGLE_AUTH(api_key=api_key)
client = instructor.from_ai_service(HAS_GOOGLE_AUTH(api_key=api_key))

agent = BaseAgent(
    config=BaseAgentConfig(
        client=client,
        model=model,
        memory=memory,
    )
)

方案二:使用兼容API

Google最新提供了与其他服务兼容的API接口,这是目前推荐的解决方案:

client = instructor.from_ai_service(
    AIServiceClient(api_key=api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/"),
    mode=instructor.Mode.JSON,
)
model = "gemini-2.0-flash-exp"

agent = BaseAgent(config=BaseAgentConfig(client=client, model=model, max_tokens=2048))

最佳实践建议

  1. 统一使用兼容API:对于支持兼容API的服务(如Google AI 2.0+),优先使用这种统一接口,可以减少适配工作。

  2. 异步操作注意事项:如果确实需要使用异步客户端,确保正确处理协程的等待和异常处理。

  3. 服务商特定参数:不同AI服务商可能有特殊的参数要求,使用前应仔细阅读官方文档。

  4. 环境隔离:为不同服务商创建独立的环境配置,避免参数冲突。

总结

在Atomic Agents项目中集成不同AI服务时,理解各服务商的API差异至关重要。通过采用服务商特定的适配方案或统一使用兼容接口,可以有效解决异步Instructor相关的验证错误。随着AI生态的发展,建议关注各主流服务商对API标准的兼容性实现,这将大大简化多平台集成的工作量。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8