Atomic Agents项目中的异步Instructor错误分析与解决方案
问题背景
在Atomic Agents项目中,开发者在运行Web-Search-Agent示例时遇到了一个与异步Instructor相关的验证错误。该错误主要出现在使用不同AI服务提供商(如Azure AI服务和Google AI服务)时,表现为Pydantic验证失败和协程未被正确等待的问题。
错误现象
核心错误信息显示为Pydantic验证错误,表明输入应该是一个有效的字典或BaseIOSchema实例,但实际接收到的是一个协程对象。同时系统提示协程'AsyncInstructor.create'从未被等待。这种错误通常发生在异步操作未被正确处理的情况下。
问题根源分析
经过深入分析,发现该问题主要由以下几个因素导致:
-
异步客户端使用不当:当使用Azure AI服务的AsyncAzure客户端时,没有正确处理异步操作流程,导致协程未被正确等待。
-
不同AI服务提供商的API差异:特别是Google AI服务的API实现方式与其他服务存在显著差异,导致标准参数传递方式不兼容。
-
模型参数传递冲突:Google AI服务要求模型在客户端初始化时设置,而不是在创建方法中传递,这与常规的使用模式不同。
解决方案
针对Azure AI服务
对于Azure AI服务,最简单的解决方案是避免使用异步客户端,转而使用标准客户端:
agent = BaseAgent(
config=BaseAgentConfig(
client=instructor.from_ai_service(ai_service.AzureClient(
api_key=os.getenv("AZURE_API_KEY"),
api_version=os.getenv("API_VERSION"),
azure_endpoint=os.getenv("AZURE_ENDPOINT"),
)),
model="gpt-4o",
memory=memory,
)
)
针对Google AI服务
对于Google AI服务,有两种可行的解决方案:
方案一:使用原生API
from google import generativeai as genai
from googleapiclient._auth import HAS_GOOGLE_AUTH
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel(model_name='models/gemini-pro')
gemini = HAS_GOOGLE_AUTH(api_key=api_key)
client = instructor.from_ai_service(HAS_GOOGLE_AUTH(api_key=api_key))
agent = BaseAgent(
config=BaseAgentConfig(
client=client,
model=model,
memory=memory,
)
)
方案二:使用兼容API
Google最新提供了与其他服务兼容的API接口,这是目前推荐的解决方案:
client = instructor.from_ai_service(
AIServiceClient(api_key=api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/"),
mode=instructor.Mode.JSON,
)
model = "gemini-2.0-flash-exp"
agent = BaseAgent(config=BaseAgentConfig(client=client, model=model, max_tokens=2048))
最佳实践建议
-
统一使用兼容API:对于支持兼容API的服务(如Google AI 2.0+),优先使用这种统一接口,可以减少适配工作。
-
异步操作注意事项:如果确实需要使用异步客户端,确保正确处理协程的等待和异常处理。
-
服务商特定参数:不同AI服务商可能有特殊的参数要求,使用前应仔细阅读官方文档。
-
环境隔离:为不同服务商创建独立的环境配置,避免参数冲突。
总结
在Atomic Agents项目中集成不同AI服务时,理解各服务商的API差异至关重要。通过采用服务商特定的适配方案或统一使用兼容接口,可以有效解决异步Instructor相关的验证错误。随着AI生态的发展,建议关注各主流服务商对API标准的兼容性实现,这将大大简化多平台集成的工作量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00