Apache UIMA Asynchronous Scaleout (UIMA-AS) 教程
项目介绍
Apache UIMA Asynchronous Scaleout (UIMA-AS) 是 Apache UIMA 的一个增强版本,提供了灵活的横向扩展能力。UIMA-AS 是第二代设计,取代了 CPM 和 Vinci 服务。虽然 CPM 和 Vinci 仍然可用,但新的设计鼓励使用 UIMA-AS 以实现更好的可扩展性。UIMA-AS 与新的流控制器架构集成,可以应用于原始和聚合分析引擎。
项目快速启动
环境准备
在开始之前,确保你已经安装了以下软件:
- Java JDK 8 或更高版本
- Apache Maven
- ActiveMQ 消息代理
克隆项目
首先,克隆 UIMA-AS 项目到本地:
git clone https://github.com/apache/uima-async-scaleout.git
cd uima-async-scaleout
构建项目
使用 Maven 构建项目:
mvn clean install
启动 ActiveMQ 代理
在项目目录中,运行以下脚本来启动 ActiveMQ 代理:
bin/startBroker.sh
部署 UIMA-AS 服务
创建一个 UIMA-AS 部署描述符文件 deploymentDescriptor.xml,然后使用以下脚本部署服务:
bin/deployAsyncService.sh deploymentDescriptor.xml
调用 UIMA-AS 服务
使用以下脚本调用已部署的 UIMA-AS 服务:
bin/runRemoteAsyncAE.sh --location serviceLocation --input inputFile.txt
应用案例和最佳实践
案例一:文本分析
UIMA-AS 可以用于大规模的文本分析任务,通过横向扩展提高处理能力。例如,可以使用 UIMA-AS 处理大量的新闻文章,提取关键信息和实体。
案例二:生物信息学
在生物信息学领域,UIMA-AS 可以用于处理和分析大量的基因序列数据,通过并行处理加速数据分析过程。
最佳实践
- 合理配置部署描述符:确保部署描述符中的参数设置合理,以充分利用资源。
- 监控和日志:定期监控服务状态和日志,及时发现和解决问题。
- 错误处理:在部署描述符中配置适当的错误处理策略,以提高系统的健壮性。
典型生态项目
Apache UIMA
UIMA-AS 是基于 Apache UIMA 构建的,因此了解和使用 UIMA 是使用 UIMA-AS 的前提。UIMA 提供了丰富的文本分析和处理功能。
ActiveMQ
UIMA-AS 依赖于 ActiveMQ 消息代理进行消息传递和任务分发。ActiveMQ 是一个高性能的消息代理,支持多种消息协议。
Apache Kafka
对于需要更高吞吐量的场景,可以考虑使用 Apache Kafka 作为消息代理。Kafka 提供了高吞吐量和低延迟的消息传递能力。
通过以上内容,您可以快速了解和使用 Apache UIMA Asynchronous Scaleout (UIMA-AS) 项目,并掌握其应用案例和最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00