DeepKE-LLM项目中的模型并行与显存优化实践
2025-06-17 20:59:58作者:温艾琴Wonderful
在大型语言模型训练过程中,显存不足是开发者经常面临的挑战。本文以DeepKE-LLM项目为例,探讨如何通过不同的并行策略和显存优化技术解决这一问题。
问题背景
当使用DeepKE-LLM对ChatGLM3-6B模型进行LoRA微调时,遇到以下典型场景:
- 单条指令数据平均长度超过8K tokens
- 即使在batch_size=1的情况下,24GB显存的GPU也无法容纳模型
- 缺乏更大显存的单卡设备
解决方案探索
1. DeepSpeed Stage 2方案
DeepSpeed的Stage 2配置提供了基本的数据并行和ZeRO优化器状态分割。这是最直接的解决方案,配置简单且兼容性好。在DeepKE-LLM项目中,可以通过以下方式启用:
--deepspeed configs/ds_config_bf16.json
这种方案适合大多数场景,能够有效减少显存占用,同时保持较好的训练效率。
2. DeepSpeed Stage 3高级方案
对于更大模型或更长序列的情况,可以采用更激进的Stage 3配置。该方案不仅分割优化器状态,还分割模型参数和梯度,显著降低每张卡的显存需求。
Stage 3的核心配置包括:
{
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": 5e8
}
}
3. 优化器卸载问题处理
在实践中发现,直接使用包含优化器CPU卸载的Stage 3配置会导致错误。这是因为:
- 当优化器状态被卸载到CPU时,系统需要在不同设备间传输张量
- 某些操作可能不支持跨设备执行
- 内存和显存间的数据传输可能引入同步问题
解决方案是移除配置中的优化器卸载部分:
// 移除这部分配置
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
}
技术原理深入
ZeRO优化技术解析
DeepSpeed的ZeRO(Zero Redundancy Optimizer)技术通过三种级别的优化来减少显存占用:
- Stage 1:仅分割优化器状态
- Stage 2:分割优化器状态和梯度
- Stage 3:分割优化器状态、梯度和模型参数
Stage 3虽然显存效率最高,但也带来了更多的通信开销,需要根据具体硬件条件和模型大小权衡选择。
通信效率考量
在模型并行环境中,通信效率是关键因素。DeepSpeed通过以下技术优化通信:
- 重叠通信与计算:通过
overlap_comm参数启用 - 桶式梯度减少:通过
reduce_bucket_size控制 - 连续梯度:
contiguous_gradients选项减少内存碎片
实践建议
- 从Stage 2开始:对于大多数6B级别模型,Stage 2通常足够
- 谨慎使用Stage 3:仅在必要时使用,注意通信开销
- 监控硬件使用:关注GPU利用率和显存使用情况
- 梯度累积:结合梯度累积技术可以进一步降低显存需求
- 混合精度训练:确保启用bf16或fp16以减少显存占用
总结
DeepKE-LLM项目通过集成DeepSpeed提供了灵活的并行训练方案。针对不同规模的模型和硬件配置,开发者可以选择合适的优化级别。理解这些技术背后的原理,能够帮助我们在显存限制和训练效率之间找到最佳平衡点,成功部署大型语言模型的微调任务。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218