DeepKE-LLM项目中的模型并行与显存优化实践
2025-06-17 19:51:46作者:温艾琴Wonderful
在大型语言模型训练过程中,显存不足是开发者经常面临的挑战。本文以DeepKE-LLM项目为例,探讨如何通过不同的并行策略和显存优化技术解决这一问题。
问题背景
当使用DeepKE-LLM对ChatGLM3-6B模型进行LoRA微调时,遇到以下典型场景:
- 单条指令数据平均长度超过8K tokens
- 即使在batch_size=1的情况下,24GB显存的GPU也无法容纳模型
- 缺乏更大显存的单卡设备
解决方案探索
1. DeepSpeed Stage 2方案
DeepSpeed的Stage 2配置提供了基本的数据并行和ZeRO优化器状态分割。这是最直接的解决方案,配置简单且兼容性好。在DeepKE-LLM项目中,可以通过以下方式启用:
--deepspeed configs/ds_config_bf16.json
这种方案适合大多数场景,能够有效减少显存占用,同时保持较好的训练效率。
2. DeepSpeed Stage 3高级方案
对于更大模型或更长序列的情况,可以采用更激进的Stage 3配置。该方案不仅分割优化器状态,还分割模型参数和梯度,显著降低每张卡的显存需求。
Stage 3的核心配置包括:
{
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": 5e8
}
}
3. 优化器卸载问题处理
在实践中发现,直接使用包含优化器CPU卸载的Stage 3配置会导致错误。这是因为:
- 当优化器状态被卸载到CPU时,系统需要在不同设备间传输张量
- 某些操作可能不支持跨设备执行
- 内存和显存间的数据传输可能引入同步问题
解决方案是移除配置中的优化器卸载部分:
// 移除这部分配置
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
}
技术原理深入
ZeRO优化技术解析
DeepSpeed的ZeRO(Zero Redundancy Optimizer)技术通过三种级别的优化来减少显存占用:
- Stage 1:仅分割优化器状态
- Stage 2:分割优化器状态和梯度
- Stage 3:分割优化器状态、梯度和模型参数
Stage 3虽然显存效率最高,但也带来了更多的通信开销,需要根据具体硬件条件和模型大小权衡选择。
通信效率考量
在模型并行环境中,通信效率是关键因素。DeepSpeed通过以下技术优化通信:
- 重叠通信与计算:通过
overlap_comm参数启用 - 桶式梯度减少:通过
reduce_bucket_size控制 - 连续梯度:
contiguous_gradients选项减少内存碎片
实践建议
- 从Stage 2开始:对于大多数6B级别模型,Stage 2通常足够
- 谨慎使用Stage 3:仅在必要时使用,注意通信开销
- 监控硬件使用:关注GPU利用率和显存使用情况
- 梯度累积:结合梯度累积技术可以进一步降低显存需求
- 混合精度训练:确保启用bf16或fp16以减少显存占用
总结
DeepKE-LLM项目通过集成DeepSpeed提供了灵活的并行训练方案。针对不同规模的模型和硬件配置,开发者可以选择合适的优化级别。理解这些技术背后的原理,能够帮助我们在显存限制和训练效率之间找到最佳平衡点,成功部署大型语言模型的微调任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1