Django Admin Autocomplete Filter 使用教程
1. 项目介绍
Django Admin Autocomplete Filter 是一个基于 Django 的开源应用,它允许开发者在 Django 管理后台使用自动完成功能来过滤列表数据。这个应用通过引入一个自动完成的文本输入框,替换了传统的选择框,从而提高了用户在管理后台筛选数据时的体验和效率。
2. 项目快速启动
要快速启动 Django Admin Autocomplete Filter,请按照以下步骤操作:
首先,确保你的环境中已经安装了 Django(版本 >= 2.0)。
然后,通过 pip 安装 django-admin-autocomplete-filter:
pip install django-admin-autocomplete-filter
在项目的 settings.py 文件中,将 admin_auto_filters 添加到 INSTALLED_APPS 列表:
INSTALLED_APPS = [
# 其他应用...
'admin_auto_filters',
]
接下来,在你的模型和 admin 类中配置自动完成过滤器。以下是一个示例:
from django.db import models
from django.contrib import admin
from admin_auto_filters.filters import AutocompleteFilter
class Artist(models.Model):
name = models.CharField(max_length=128)
class Album(models.Model):
name = models.CharField(max_length=64)
artist = models.ForeignKey(Artist, on_delete=models.CASCADE)
class ArtistAdmin(admin.ModelAdmin):
search_fields = ['name']
class ArtistFilter(AutocompleteFilter):
title = 'Artist'
field_name = 'artist'
class AlbumAdmin(admin.ModelAdmin):
list_filter = [ArtistFilter()]
最后,运行你的 Django 项目的迁移脚本和应用服务:
python manage.py migrate
python manage.py runserver
现在,你应该能在 Django 管理后台看到自动完成的过滤器。
3. 应用案例和最佳实践
以下是一个应用案例,假设我们有一个 Album 模型,我们希望根据 Artist 字段过滤专辑列表:
首先,确保 Artist 模型有一个 search_fields 属性,这样 Django 才能正确地提供自动完成的搜索结果。
然后,创建一个自定义的 AutocompleteFilter 类,指定过滤器标题和关联字段名称。
最后,在 AlbumAdmin 类中配置 list_filter 以使用新的 ArtistFilter。
对于最佳实践,建议为每个自动完成过滤器提供一个自定义的视图,这样可以更细粒度地控制搜索结果。
4. 典型生态项目
Django Admin Autocomplete Filter 是 Django 生态系统中的一个典型项目,它与其他 Django 开源项目如 Django Grappelli 等协同工作,提供了增强 Django 管理后台功能的解决方案。通过这种方式,开发者可以构建出更加用户友好和功能强大的管理界面。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00