Scikit-Learn教程:聚类算法详解与实战指南
2025-06-07 15:50:54作者:冯爽妲Honey
什么是聚类分析?
聚类是一种将数据点分组的无监督学习技术,其核心思想是:同一组(簇)内的数据点彼此相似度高于其他组的数据点。在机器学习和数据分析领域,聚类能帮助我们揭示数据的内在结构,发现隐藏的模式和分组。
聚类分析具有以下特点:
- 无监督学习:不需要预先标记的训练数据
- 探索性分析:帮助理解数据分布特征
- 广泛应用:客户细分、异常检测、图像分割等领域
主流聚类算法解析
Scikit-Learn提供了多种聚类算法实现,语法结构相似但适用场景各异。下面重点介绍四种核心算法:
K均值聚类(K-Means)
算法原理: K-Means通过迭代将数据划分为K个簇,每个簇由其质心(中心点)表示。算法最小化簇内平方误差和(SSE),即各点到其所属簇质心的距离平方和。
工作流程:
- 随机初始化K个质心位置
- 将每个数据点分配到最近的质心形成簇
- 重新计算每个簇的质心(取簇内点的均值)
- 重复步骤2-3直到收敛(质心不再显著变化)
特点:
- 需要预先指定K值
- 对初始质心敏感
- 适合球形分布、规模相近的簇
- 计算效率高,适合大数据集
均值漂移聚类(Mean Shift)
算法原理: Mean Shift是一种基于密度峰值的算法,通过滑动窗口寻找数据密度最大的区域。它不需要预先指定簇数量,能自动发现任意形状的簇。
工作流程:
- 在数据空间布置滑动窗口
- 将窗口向密度增加方向移动(计算窗口内点的均值)
- 合并重叠窗口,保留密度高的窗口
- 将数据点分配到最终窗口对应的簇
特点:
- 自动确定簇数量
- 对噪声和异常值鲁棒
- 适合任意形状的簇
- 计算复杂度较高
层次聚类(Hierarchical Clustering)
算法类型:
- 凝聚式(自底向上):每个点初始为独立簇,逐步合并最近簇
- 分裂式(自顶向下):所有点初始为单一簇,逐步分裂
关键要素:
- 距离度量(如欧氏距离)
- 连接准则(如单连接、全连接、平均连接)
可视化工具: 树状图(Dendrogram)可直观展示层次关系,帮助确定最佳簇数。
DBSCAN密度聚类
核心概念:
- ε邻域:以点为中心,ε为半径的圆形区域
- 核心点:邻域内包含至少min_samples个点的点
- 边界点:属于某核心点邻域但自身非核心的点
- 噪声点:既非核心也非边界的点
算法优势:
- 无需预先指定簇数
- 能识别任意形状的簇
- 自动处理噪声点
- 对数据输入顺序敏感
算法对比与选择指南
性能对比实验
我们使用Scikit-Learn内置的算法比较代码,在合成数据集上测试各算法表现:
鸢尾花数据集实战
import pandas as pd
from sklearn.cluster import KMeans, MeanShift, AgglomerativeClustering, DBSCAN
# 加载数据
iris = pd.read_csv('iris.data', names=['sepal_length','sepal_width',
'petal_length','petal_width','label'])
features = iris.drop(['label'], axis=1)
# 初始化模型
models = [
('KMeans', KMeans(n_clusters=3)),
('MeanShift', MeanShift()),
('Agglomerative', AgglomerativeClustering()),
('DBSCAN', DBSCAN())
]
# 训练并预测
for name, model in models:
print(f"{name}结果:")
print(model.fit_predict(features))
选型建议
算法 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
K-Means | 球形簇、已知簇数 | 高效、易实现 | 需预设K值、对异常值敏感 |
Mean Shift | 任意形状、未知簇数 | 自动确定簇数 | 计算成本高、带宽选择关键 |
层次聚类 | 需要层次结构 | 可视化直观、多种连接方式 | 计算复杂度O(n³) |
DBSCAN | 密度变化、含噪声 | 发现任意形状、抗噪声 | 对参数敏感、高维数据效果差 |
进阶技巧与注意事项
-
数据预处理:
- 标准化处理(聚类对尺度敏感)
- 降维处理(特别是高维数据)
-
参数调优:
- K-Means:肘部法则确定K值
- DBSCAN:通过k-距离图选择ε
- Mean Shift:合理设置带宽参数
-
评估指标:
- 轮廓系数(Silhouette Score)
- Calinski-Harabasz指数
- Davies-Bouldin指数
-
常见陷阱:
- 忽视数据分布假设
- 过度依赖默认参数
- 忽略特征相关性
聚类分析是探索性数据分析的强大工具,选择合适算法需结合数据特征和业务需求。建议从K-Means开始尝试,再根据效果逐步尝试其他算法。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5