Scikit-Learn教程:聚类算法详解与实战指南
2025-06-07 10:06:59作者:冯爽妲Honey
什么是聚类分析?
聚类是一种将数据点分组的无监督学习技术,其核心思想是:同一组(簇)内的数据点彼此相似度高于其他组的数据点。在机器学习和数据分析领域,聚类能帮助我们揭示数据的内在结构,发现隐藏的模式和分组。
聚类分析具有以下特点:
- 无监督学习:不需要预先标记的训练数据
- 探索性分析:帮助理解数据分布特征
- 广泛应用:客户细分、异常检测、图像分割等领域
主流聚类算法解析
Scikit-Learn提供了多种聚类算法实现,语法结构相似但适用场景各异。下面重点介绍四种核心算法:
K均值聚类(K-Means)
算法原理: K-Means通过迭代将数据划分为K个簇,每个簇由其质心(中心点)表示。算法最小化簇内平方误差和(SSE),即各点到其所属簇质心的距离平方和。
工作流程:
- 随机初始化K个质心位置
- 将每个数据点分配到最近的质心形成簇
- 重新计算每个簇的质心(取簇内点的均值)
- 重复步骤2-3直到收敛(质心不再显著变化)
特点:
- 需要预先指定K值
- 对初始质心敏感
- 适合球形分布、规模相近的簇
- 计算效率高,适合大数据集

均值漂移聚类(Mean Shift)
算法原理: Mean Shift是一种基于密度峰值的算法,通过滑动窗口寻找数据密度最大的区域。它不需要预先指定簇数量,能自动发现任意形状的簇。
工作流程:
- 在数据空间布置滑动窗口
- 将窗口向密度增加方向移动(计算窗口内点的均值)
- 合并重叠窗口,保留密度高的窗口
- 将数据点分配到最终窗口对应的簇
特点:
- 自动确定簇数量
- 对噪声和异常值鲁棒
- 适合任意形状的簇
- 计算复杂度较高

层次聚类(Hierarchical Clustering)
算法类型:
- 凝聚式(自底向上):每个点初始为独立簇,逐步合并最近簇
- 分裂式(自顶向下):所有点初始为单一簇,逐步分裂
关键要素:
- 距离度量(如欧氏距离)
- 连接准则(如单连接、全连接、平均连接)
可视化工具: 树状图(Dendrogram)可直观展示层次关系,帮助确定最佳簇数。
DBSCAN密度聚类
核心概念:
- ε邻域:以点为中心,ε为半径的圆形区域
- 核心点:邻域内包含至少min_samples个点的点
- 边界点:属于某核心点邻域但自身非核心的点
- 噪声点:既非核心也非边界的点
算法优势:
- 无需预先指定簇数
- 能识别任意形状的簇
- 自动处理噪声点
- 对数据输入顺序敏感
![]()
算法对比与选择指南
性能对比实验
我们使用Scikit-Learn内置的算法比较代码,在合成数据集上测试各算法表现:

鸢尾花数据集实战
import pandas as pd
from sklearn.cluster import KMeans, MeanShift, AgglomerativeClustering, DBSCAN
# 加载数据
iris = pd.read_csv('iris.data', names=['sepal_length','sepal_width',
'petal_length','petal_width','label'])
features = iris.drop(['label'], axis=1)
# 初始化模型
models = [
('KMeans', KMeans(n_clusters=3)),
('MeanShift', MeanShift()),
('Agglomerative', AgglomerativeClustering()),
('DBSCAN', DBSCAN())
]
# 训练并预测
for name, model in models:
print(f"{name}结果:")
print(model.fit_predict(features))
选型建议
| 算法 | 适用场景 | 优点 | 缺点 |
|---|---|---|---|
| K-Means | 球形簇、已知簇数 | 高效、易实现 | 需预设K值、对异常值敏感 |
| Mean Shift | 任意形状、未知簇数 | 自动确定簇数 | 计算成本高、带宽选择关键 |
| 层次聚类 | 需要层次结构 | 可视化直观、多种连接方式 | 计算复杂度O(n³) |
| DBSCAN | 密度变化、含噪声 | 发现任意形状、抗噪声 | 对参数敏感、高维数据效果差 |
进阶技巧与注意事项
-
数据预处理:
- 标准化处理(聚类对尺度敏感)
- 降维处理(特别是高维数据)
-
参数调优:
- K-Means:肘部法则确定K值
- DBSCAN:通过k-距离图选择ε
- Mean Shift:合理设置带宽参数
-
评估指标:
- 轮廓系数(Silhouette Score)
- Calinski-Harabasz指数
- Davies-Bouldin指数
-
常见陷阱:
- 忽视数据分布假设
- 过度依赖默认参数
- 忽略特征相关性
聚类分析是探索性数据分析的强大工具,选择合适算法需结合数据特征和业务需求。建议从K-Means开始尝试,再根据效果逐步尝试其他算法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895