Scikit-Learn教程:聚类算法详解与实战指南
2025-06-07 20:43:16作者:冯爽妲Honey
什么是聚类分析?
聚类是一种将数据点分组的无监督学习技术,其核心思想是:同一组(簇)内的数据点彼此相似度高于其他组的数据点。在机器学习和数据分析领域,聚类能帮助我们揭示数据的内在结构,发现隐藏的模式和分组。
聚类分析具有以下特点:
- 无监督学习:不需要预先标记的训练数据
- 探索性分析:帮助理解数据分布特征
- 广泛应用:客户细分、异常检测、图像分割等领域
主流聚类算法解析
Scikit-Learn提供了多种聚类算法实现,语法结构相似但适用场景各异。下面重点介绍四种核心算法:
K均值聚类(K-Means)
算法原理: K-Means通过迭代将数据划分为K个簇,每个簇由其质心(中心点)表示。算法最小化簇内平方误差和(SSE),即各点到其所属簇质心的距离平方和。
工作流程:
- 随机初始化K个质心位置
- 将每个数据点分配到最近的质心形成簇
- 重新计算每个簇的质心(取簇内点的均值)
- 重复步骤2-3直到收敛(质心不再显著变化)
特点:
- 需要预先指定K值
- 对初始质心敏感
- 适合球形分布、规模相近的簇
- 计算效率高,适合大数据集

均值漂移聚类(Mean Shift)
算法原理: Mean Shift是一种基于密度峰值的算法,通过滑动窗口寻找数据密度最大的区域。它不需要预先指定簇数量,能自动发现任意形状的簇。
工作流程:
- 在数据空间布置滑动窗口
- 将窗口向密度增加方向移动(计算窗口内点的均值)
- 合并重叠窗口,保留密度高的窗口
- 将数据点分配到最终窗口对应的簇
特点:
- 自动确定簇数量
- 对噪声和异常值鲁棒
- 适合任意形状的簇
- 计算复杂度较高

层次聚类(Hierarchical Clustering)
算法类型:
- 凝聚式(自底向上):每个点初始为独立簇,逐步合并最近簇
- 分裂式(自顶向下):所有点初始为单一簇,逐步分裂
关键要素:
- 距离度量(如欧氏距离)
- 连接准则(如单连接、全连接、平均连接)
可视化工具: 树状图(Dendrogram)可直观展示层次关系,帮助确定最佳簇数。
DBSCAN密度聚类
核心概念:
- ε邻域:以点为中心,ε为半径的圆形区域
- 核心点:邻域内包含至少min_samples个点的点
- 边界点:属于某核心点邻域但自身非核心的点
- 噪声点:既非核心也非边界的点
算法优势:
- 无需预先指定簇数
- 能识别任意形状的簇
- 自动处理噪声点
- 对数据输入顺序敏感
![]()
算法对比与选择指南
性能对比实验
我们使用Scikit-Learn内置的算法比较代码,在合成数据集上测试各算法表现:

鸢尾花数据集实战
import pandas as pd
from sklearn.cluster import KMeans, MeanShift, AgglomerativeClustering, DBSCAN
# 加载数据
iris = pd.read_csv('iris.data', names=['sepal_length','sepal_width',
'petal_length','petal_width','label'])
features = iris.drop(['label'], axis=1)
# 初始化模型
models = [
('KMeans', KMeans(n_clusters=3)),
('MeanShift', MeanShift()),
('Agglomerative', AgglomerativeClustering()),
('DBSCAN', DBSCAN())
]
# 训练并预测
for name, model in models:
print(f"{name}结果:")
print(model.fit_predict(features))
选型建议
| 算法 | 适用场景 | 优点 | 缺点 |
|---|---|---|---|
| K-Means | 球形簇、已知簇数 | 高效、易实现 | 需预设K值、对异常值敏感 |
| Mean Shift | 任意形状、未知簇数 | 自动确定簇数 | 计算成本高、带宽选择关键 |
| 层次聚类 | 需要层次结构 | 可视化直观、多种连接方式 | 计算复杂度O(n³) |
| DBSCAN | 密度变化、含噪声 | 发现任意形状、抗噪声 | 对参数敏感、高维数据效果差 |
进阶技巧与注意事项
-
数据预处理:
- 标准化处理(聚类对尺度敏感)
- 降维处理(特别是高维数据)
-
参数调优:
- K-Means:肘部法则确定K值
- DBSCAN:通过k-距离图选择ε
- Mean Shift:合理设置带宽参数
-
评估指标:
- 轮廓系数(Silhouette Score)
- Calinski-Harabasz指数
- Davies-Bouldin指数
-
常见陷阱:
- 忽视数据分布假设
- 过度依赖默认参数
- 忽略特征相关性
聚类分析是探索性数据分析的强大工具,选择合适算法需结合数据特征和业务需求。建议从K-Means开始尝试,再根据效果逐步尝试其他算法。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
581
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
366
仓颉编程语言运行时与标准库。
Cangjie
130
379
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205