BertSum 开源项目教程
2024-09-16 14:50:13作者:秋阔奎Evelyn
1. 项目的目录结构及介绍
BertSum/
├── bert_config.json
├── bert_model.ckpt.data-00000-of-00001
├── bert_model.ckpt.index
├── bert_model.ckpt.meta
├── bert_model.py
├── data/
│ ├── cnndm/
│ │ ├── test.bin
│ │ ├── train.bin
│ │ └── valid.bin
│ └── cnndm.vocab
├── decode_full_model.py
├── eval.py
├── LICENSE
├── models/
│ ├── __init__.py
│ ├── model_builder.py
│ ├── model_builder_abstract.py
│ ├── model_builder_abstract_pretrain.py
│ └── model_builder_pretrain.py
├── README.md
├── requirements.txt
├── run_abstractive_pretrain.py
├── run_abstractive.py
├── run_extractive.py
├── src/
│ ├── __init__.py
│ ├── data_loader.py
│ ├── data_loader_abstract.py
│ ├── data_loader_abstract_pretrain.py
│ ├── data_loader_ext.py
│ ├── data_loader_ext_pretrain.py
│ ├── data_util.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── decoder.py
│ │ ├── encoder.py
│ │ ├── extractive.py
│ │ ├── pointer_generator.py
│ │ └── transformer.py
│ ├── optimizers.py
│ ├── predict.py
│ ├── preprocess.py
│ ├── train.py
│ └── utils.py
└── train_full_model.py
目录结构介绍
bert_config.json
,bert_model.ckpt.*
: 包含预训练的BERT模型的配置和权重文件。data/
: 存放数据集文件,包括训练、验证和测试数据。models/
: 包含模型的构建和实现文件。src/
: 包含数据加载、模型训练、预测等核心功能的实现文件。run_*.py
: 不同任务的运行脚本,如摘要生成、提取式摘要等。train_full_model.py
,decode_full_model.py
: 用于训练和解码完整模型的脚本。eval.py
: 用于模型评估的脚本。
2. 项目的启动文件介绍
run_abstractive.py
该文件用于启动抽象式摘要任务。它包含了模型的训练和评估逻辑。
run_extractive.py
该文件用于启动提取式摘要任务。它包含了模型的训练和评估逻辑。
train_full_model.py
该文件用于训练完整的摘要生成模型。它包含了模型的训练逻辑。
decode_full_model.py
该文件用于解码生成的摘要。它包含了模型的解码逻辑。
3. 项目的配置文件介绍
bert_config.json
该文件包含了预训练BERT模型的配置信息,如隐藏层大小、注意力头数等。
requirements.txt
该文件列出了项目运行所需的Python依赖包及其版本。
data/cnndm.vocab
该文件包含了数据集的词汇表,用于文本的编码和解码。
models/model_builder.py
该文件包含了模型的构建逻辑,定义了模型的结构和参数。
src/data_loader.py
该文件包含了数据加载的配置,定义了如何从数据集中加载和预处理数据。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie033
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
833
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
searchall
强大的敏感信息搜索工具
Go
2
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K