JS框架基准测试项目在Chrome 124中的性能异常分析
在JS框架基准测试项目中,Chrome 124浏览器版本出现了一系列令人困惑的性能异常现象。本文将从技术角度深入分析这些异常的表现、原因以及最终的解决方案。
性能异常现象
测试团队最初发现Chrome 124的测试结果出现了几个明显异常:
-
异常的性能数值:最快的框架得分仅为1.05,这在历史数据中通常预示着测量可能存在问题。
-
RAF框架表现异常:使用requestAnimationFrame(RAF)的框架(如Imba)在测试中表现优于不使用RAF的框架,这与常规认知不符。
-
测试结果不一致:自动化测试结果与手动测试结果存在显著差异,特别是在"创建1000行"测试场景中。
深入技术分析
通过详细的性能追踪和对比测试,团队发现了几个关键现象:
-
GC调用影响:强制垃圾回收(GC)对不同框架的影响不一致。正常情况下,强制GC应该有助于大多数框架,因为它可以防止在执行过程中发生GC。然而在ivi框架中,强制GC反而会略微降低性能。
-
时间测量问题:对于使用RAF的框架,存在两个提交事件,而传统框架只有一个。这导致测量方式的选择会影响最终结果。
-
延迟影响性能:在测试中添加延迟会显著影响性能结果,这在Chrome 123及之前版本中是不存在的现象。
问题根源
经过深入排查,发现问题主要源于:
-
GC机制变化:Chrome 124对垃圾回收机制进行了优化调整,导致原有的GC调用方式不再完全有效。
-
HTML解析优化:Chrome 124对innerHTML等DOM操作进行了优化,这影响了不同框架之间的相对性能表现。
-
RAF处理变化:浏览器对requestAnimationFrame的处理方式有所调整,导致使用RAF的框架测量结果出现偏差。
解决方案
团队最终通过以下方法解决了这些问题:
-
改进GC调用:使用更全面的GC调用方式,包括指定GC类型和执行方式:
window.gc({type:'major',execution:'sync',flavor:'last-resort'}) -
统一测量标准:对于使用RAF的框架,明确测量从点击事件到最后一个提交事件结束的时间,确保公平性。
-
内存使用监控:增加对测试后内存使用的监控,确保GC确实有效清理了内存。
经验总结
这次事件提供了几个重要的技术经验:
-
浏览器版本升级可能对性能测试产生意想不到的影响,需要特别关注。
-
GC策略在现代JavaScript性能测试中扮演着关键角色,需要谨慎处理。
-
自动化测试与手动测试结果的一致性验证至关重要,可以及早发现问题。
-
性能测量方法需要随着浏览器技术发展而不断调整,不能一成不变。
通过这次问题的解决,JS框架基准测试项目不仅修复了Chrome 124下的测试异常,还完善了测试方法论,为未来的浏览器版本兼容性打下了更好基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00