Tesla库中运行时设置适配器与Mock的注意事项
2025-07-05 09:51:28作者:咎竹峻Karen
概述
在使用Elixir的Tesla HTTP客户端库时,开发者可能会遇到一个常见问题:当在运行时动态设置适配器(Adapter)时,测试环境中的Mock功能会失效。本文将深入分析这一现象的原因,并提供解决方案。
问题现象
当开发者使用如下方式在运行时设置Tesla适配器:
client = Tesla.client([], {Tesla.Adapter.Mint, timeout: 5_000})
然后在测试中尝试使用Tesla.Mock时:
global_mock(fn env -> {:ok, %Tesla.Env{status: 200}} end)
会发现Mock并没有生效,请求仍然会通过实际配置的适配器(Mint)发送出去。
原因分析
这种现象是Tesla库的预期行为。当开发者显式地在代码中指定了适配器时,Tesla会优先使用这个指定的适配器,而不会考虑测试环境中配置的Mock适配器。这是Tesla库的设计决策,目的是确保生产环境和测试环境的行为一致性。
解决方案
配置化适配器选择
最佳实践是通过应用配置来管理适配器的选择,而不是在代码中硬编码。这样可以灵活地在不同环境中切换适配器:
defmodule YourApp.HttpRequest do
def make_request do
middlewares = [
Tesla.Middleware.Logger,
Tesla.Middleware.JSON,
{Tesla.Middleware.BaseUrl, base_url},
{Tesla.Middleware.Telemetry, metadata: telemetry_metadata}
]
adapter =
:your_app
|> Application.get_env(YourApp.HttpRequest, [])
|> Keyword.get(:adapter, {Tesla.Adapter.Mint, timeout: 5_000})
client = Tesla.client([], adapter)
Tesla.request(client, method: method, url: path, query: query, body: payload)
end
end
测试环境配置
然后在测试配置文件中指定使用Mock适配器:
# config/test.exs
config :your_app, YourApp.HttpRequest,
adapter: Tesla.Mock
设计考量
这种设计有几个优点:
- 环境隔离:生产环境和测试环境可以完全独立配置
- 可测试性:测试时可以轻松切换到Mock适配器
- 灵活性:可以根据需要配置不同的适配器参数
- 可维护性:适配器配置集中管理,便于修改
最佳实践建议
- 避免在业务代码中硬编码适配器配置
- 使用应用配置来管理环境相关的设置
- 为不同的环境(dev/test/prod)提供不同的配置
- 考虑为适配器配置提供合理的默认值
通过遵循这些实践,可以确保Tesla库在不同环境中都能按预期工作,同时保持良好的可测试性。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
1 freeCodeCamp课程中meta元素的教学优化建议2 freeCodeCamp课程中英语学习模块的提示信息优化建议3 freeCodeCamp课程中CSS可访问性问题的技术解析4 freeCodeCamp正则表达式教学视频中的语法修正5 freeCodeCamp课程中事件传单页面的CSS选择器问题解析6 freeCodeCamp正则表达式课程中反向引用示例代码修正分析7 freeCodeCamp课程中排版基础概念的优化探讨8 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议9 freeCodeCamp项目中移除未使用的CSS样式优化指南10 freeCodeCamp JavaScript课程中十进制转二进制转换器的潜在问题分析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
119
174

React Native鸿蒙化仓库
C++
160
249

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
788
483

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
149
256

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
321
1.05 K

🔥Vue3 + Vite6+ TypeScript + Element-Plus 构建的后台管理前端模板,配套接口文档和后端源码,vue-element-admin 的 Vue3 版本。
Vue
253
43

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
383
364

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.04 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
816
22