Synopsys Detect 使用教程
1. 项目介绍
Synopsys Detect 是一个用于扫描和分析代码库的开源工具,主要用于 Synopsys 的产品,如 Black Duck。它能够对项目中的代码进行组合分析,并作为一个智能扫描客户端,将扫描结果发送到 Black Duck 进行风险分析。通过 Synopsys Detect,用户可以识别开源组件、许可证和安全漏洞,从而更好地管理软件供应链的安全性。
2. 项目快速启动
2.1 安装 Synopsys Detect
2.1.1 Linux/MacOS 安装
在 Linux 或 MacOS 系统上,可以通过以下命令安装 Synopsys Detect:
bash <(curl -s -L https://detect.synopsys.com/detect9.sh)
2.1.2 Windows 安装
在 Windows 系统上,可以通过以下命令在命令提示符中安装 Synopsys Detect:
powershell "[Net.ServicePointManager]::SecurityProtocol = 'tls12'; irm https://detect.synopsys.com/detect9.ps1?$(Get-Random) | iex; detect"
或者在 PowerShell 中运行:
[Net.ServicePointManager]::SecurityProtocol = 'tls12'; $Env:DETECT_EXIT_CODE_PASSTHRU=1; irm https://detect.synopsys.com/detect9.ps1?$(Get-Random) | iex; detect
2.2 运行扫描
安装完成后,可以通过以下命令运行扫描:
detect --blackduck.url=<Black Duck URL> --blackduck.api.token=<API Token>
其中,<Black Duck URL> 是 Black Duck 服务器的 URL,<API Token> 是你的 API 令牌。
3. 应用案例和最佳实践
3.1 应用案例
Synopsys Detect 广泛应用于软件供应链安全管理中。例如,一家大型金融机构使用 Synopsys Detect 对其代码库进行定期扫描,以确保所有使用的开源组件都符合其安全策略,并且没有已知的安全漏洞。
3.2 最佳实践
- 定期扫描:建议定期运行 Synopsys Detect 扫描,以确保代码库的安全性。
- 集成 CI/CD 管道:将 Synopsys Detect 集成到 CI/CD 管道中,可以在每次代码提交时自动进行安全扫描。
- 配置警报:配置 Synopsys Detect 以在发现高风险漏洞时发送警报,以便及时采取行动。
4. 典型生态项目
4.1 Black Duck
Black Duck 是 Synopsys 提供的一个软件组成分析工具,用于识别和管理开源组件、许可证和安全漏洞。Synopsys Detect 是 Black Duck 的智能扫描客户端,能够将扫描结果发送到 Black Duck 进行进一步分析。
4.2 Coverity
Coverity 是 Synopsys 提供的另一个静态代码分析工具,用于检测代码中的缺陷和安全漏洞。Synopsys Detect 可以与 Coverity 集成,提供更全面的代码质量管理解决方案。
4.3 Polaris
Polaris 是 Synopsys 提供的云原生应用安全平台,支持多种开发语言和框架。Synopsys Detect 可以与 Polaris 集成,提供从代码扫描到部署的全生命周期安全管理。
通过以上模块的介绍,用户可以快速了解 Synopsys Detect 的功能和使用方法,并将其应用于实际的软件开发和安全管理中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00