在Jetson Orin上构建MLC-LLM项目的TVM-Unity运行时库
2025-05-10 00:40:41作者:魏献源Searcher
在Jetson Orin平台上构建MLC-LLM项目的TVM-Unity运行时库时,开发者可能会遇到编译失败的问题。本文将详细介绍解决方案,帮助开发者顺利完成构建过程。
问题现象
当尝试在Jetson Orin(基于ARM64架构)上从源码构建TVM-Unity时,编译过程会失败,无法生成关键的libtvm_runtime库。错误信息通常与FlashInfer组件相关,表明在编译过程中出现了配置问题。
环境要求
- 硬件平台:NVIDIA Jetson Orin系列开发板
- 操作系统:Ubuntu Linux
- CUDA版本:12.2
- Python版本:3.11
- JetPack版本:6.0-b52
解决方案
经过技术分析,发现问题源于FlashInfer组件的编译配置。以下是完整的解决方案:
- 确保使用最新版本的TVM源码
- 修改
build/cmake.config文件,添加以下配置项:
set(USE_FLASHINFER ON)
set(FLASHINFER_ENABLE_FP8 OFF)
set(FLASHINFER_ENABLE_BF16 OFF)
set(FLASHINFER_GEN_GROUP_SIZES 1 4 6 8)
set(FLASHINFER_GEN_PAGE_SIZES 16)
set(FLASHINFER_GEN_HEAD_DIMS 128)
set(FLASHINFER_GEN_KV_LAYOUTS 0 1)
set(FLASHINFER_GEN_POS_ENCODING_MODES 0 1)
set(FLASHINFER_GEN_ALLOW_FP16_QK_REDUCTIONS "false")
set(FLASHINFER_GEN_CASUALS "false" "true")
这些配置项主要做了以下调整:
- 明确启用FlashInfer支持
- 禁用FP8和BF16等Jetson Orin可能不完全支持的特性
- 设置了适合移动端设备的参数组合
- 限制了可能引起兼容性问题的选项
构建建议
完成上述配置后,建议按照标准流程进行构建:
- 创建并激活Python虚拟环境
- 运行CMake配置阶段
- 执行构建命令
- 安装生成的库文件
技术背景
FlashInfer是TVM中用于加速注意力机制计算的组件,它对硬件特性有特定要求。Jetson Orin作为移动端计算平台,其支持的指令集和计算特性与桌面级GPU有所不同,因此需要针对性地调整编译参数。
通过精确控制生成的kernel变体和启用的特性,可以确保在保持性能的同时获得最佳的兼容性。这种配置方式不仅解决了当前的编译问题,也为后续的性能优化奠定了基础。
总结
在边缘计算设备上部署MLC-LLM等大型语言模型时,针对特定硬件平台的调优是必不可少的。本文提供的解决方案已经在实际环境中验证有效,开发者可以放心采用。对于其他ARM平台,类似的配置思路也同样适用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134