首页
/ Giskard项目中RAG评估指标计算问题的技术分析

Giskard项目中RAG评估指标计算问题的技术分析

2025-06-13 15:56:28作者:宣海椒Queenly

在自然语言处理领域,RAG(检索增强生成)系统的评估至关重要。近期在Giskard开源项目中发现了一个关于RAG评估指标计算的技术问题,值得开发者们关注。

问题本质

Giskard项目中的RAG评估模块(RAGet)在使用Ragas指标时存在一个关键实现错误。代码错误地将"参考上下文"(reference context)而非"检索上下文"(retrieved context)传递给了评估指标计算函数。这个错误影响了包括Precision和Recall在内的多个核心评估指标。

技术影响

这种实现方式会导致两个严重问题:

  1. 评估对象错位:原本应该评估RAG系统实际检索到的上下文质量,现在变成了评估测试集本身的生成质量,这与RAG评估的初衷相违背。

  2. 指标失真:特别是对于Precision(精确率)和Recall(召回率)这类依赖检索上下文的指标,计算结果将无法反映RAG系统的真实性能。

正确实现原理

根据Ragas的设计规范,评估指标计算应该使用:

  • 实际检索到的上下文(retrieved contexts)
  • 生成答案(answer)
  • 标准答案(ground truth)
  • 原始问题(question)

这种设计才能真实反映RAG系统在以下方面的能力:

  1. 检索模块是否能找到相关文档片段
  2. 生成模块是否能基于检索内容产生准确回答

解决方案

项目维护者已经确认这个问题,并计划发布修复版本。开发者在使用Giskard进行RAG评估时应注意:

  1. 检查使用的Giskard版本是否包含此修复
  2. 对于关键项目,建议手动验证评估指标的输入数据是否正确
  3. 理解不同上下文在评估中的角色差异

对开发者的建议

在构建RAG评估系统时,开发者应该:

  • 明确区分参考上下文和检索上下文的概念
  • 确保评估指标接收正确的输入数据
  • 定期检查评估结果是否符合预期
  • 理解每个评估指标的实际含义和计算方式

这个问题提醒我们,在机器学习系统评估中,即使是看似微小的实现细节也可能对结果产生重大影响。保持对评估流程的严谨态度是构建可靠AI系统的关键。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
508
44
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
339
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70