Giskard项目中RAG评估指标计算问题的技术分析
2025-06-13 00:08:20作者:宣海椒Queenly
在自然语言处理领域,RAG(检索增强生成)系统的评估至关重要。近期在Giskard开源项目中发现了一个关于RAG评估指标计算的技术问题,值得开发者们关注。
问题本质
Giskard项目中的RAG评估模块(RAGet)在使用Ragas指标时存在一个关键实现错误。代码错误地将"参考上下文"(reference context)而非"检索上下文"(retrieved context)传递给了评估指标计算函数。这个错误影响了包括Precision和Recall在内的多个核心评估指标。
技术影响
这种实现方式会导致两个严重问题:
-
评估对象错位:原本应该评估RAG系统实际检索到的上下文质量,现在变成了评估测试集本身的生成质量,这与RAG评估的初衷相违背。
-
指标失真:特别是对于Precision(精确率)和Recall(召回率)这类依赖检索上下文的指标,计算结果将无法反映RAG系统的真实性能。
正确实现原理
根据Ragas的设计规范,评估指标计算应该使用:
- 实际检索到的上下文(retrieved contexts)
- 生成答案(answer)
- 标准答案(ground truth)
- 原始问题(question)
这种设计才能真实反映RAG系统在以下方面的能力:
- 检索模块是否能找到相关文档片段
- 生成模块是否能基于检索内容产生准确回答
解决方案
项目维护者已经确认这个问题,并计划发布修复版本。开发者在使用Giskard进行RAG评估时应注意:
- 检查使用的Giskard版本是否包含此修复
- 对于关键项目,建议手动验证评估指标的输入数据是否正确
- 理解不同上下文在评估中的角色差异
对开发者的建议
在构建RAG评估系统时,开发者应该:
- 明确区分参考上下文和检索上下文的概念
- 确保评估指标接收正确的输入数据
- 定期检查评估结果是否符合预期
- 理解每个评估指标的实际含义和计算方式
这个问题提醒我们,在机器学习系统评估中,即使是看似微小的实现细节也可能对结果产生重大影响。保持对评估流程的严谨态度是构建可靠AI系统的关键。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347