Radare2项目中rahash2工具的JSON输出SSDEEP哈希问题分析
在逆向工程和二进制分析领域,radare2是一个功能强大的开源框架。其中rahash2工具用于计算各种哈希值,但在最新版本中发现了一个关于SSDEEP哈希输出的问题。
问题现象
当使用rahash2工具计算SSDEEP哈希时,普通文本输出格式能够正确显示哈希值,但JSON输出格式却显示了一个十六进制编码的字符串,而非预期的SSDEEP哈希值。
具体表现为:
- 普通模式输出正确的SSDEEP哈希格式:
1536:H8pLK/4eqcKc38iKDLyc3++TQbrIRKo5:cCvqcMLyvYGURKo - JSON模式输出错误的十六进制编码:
313533363a4838704c4b2f346571634b633338694b444c7963332b2b5451627249524b6f353a63437671634d4c7976594755524b6f...
技术背景
SSDEEP是一种模糊哈希算法,主要用于识别相似但不完全相同的文件。与传统的加密哈希(MD5、SHA1等)不同,SSDEEP能够检测到文件内容的小改动,产生相似的哈希值。
在radare2框架中,rahash2工具负责计算各种哈希值,包括传统哈希和模糊哈希。JSON输出功能旨在提供机器可读的哈希结果,但在SSDEEP哈希处理上出现了编码问题。
问题根源
通过分析源代码发现,JSON输出处理逻辑中存在以下问题:
-
哈希值处理通用化:JSON输出处理将所有哈希值视为二进制数据进行十六进制编码,没有针对SSDEEP这种特殊文本格式哈希进行特殊处理。
-
数据截断问题:从输出结果可以看到,错误的十六进制字符串后面还附加了大量零值填充,这表明缓冲区处理也存在问题。
-
类型识别缺失:rahash2没有区分文本型哈希(如SSDEEP)和二进制哈希(如MD5),导致统一处理时出现编码错误。
解决方案
修复此问题需要:
-
在JSON输出逻辑中增加对SSDEEP哈希的特殊处理,直接输出原始文本格式而非十六进制编码。
-
修改哈希值缓冲区处理逻辑,避免不必要的零值填充。
-
在rahash2中建立哈希类型分类系统,区分文本型和二进制型哈希算法。
影响范围
该问题影响所有使用rahash2 JSON输出功能处理SSDEEP哈希的场景,特别是自动化分析系统中依赖JSON格式输出的部分。普通交互式使用不受影响,因为文本输出功能正常。
总结
这个案例展示了在开发通用工具时处理特殊数据类型的重要性。即使是看似简单的功能如哈希计算,也需要考虑不同算法输出格式的差异性。radare2团队已经注意到这个问题并着手修复,体现了开源社区对工具质量的持续改进。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00