DirectML项目中的aten::upsample_bicubic2d.out算子支持进展
在深度学习模型推理过程中,图像上采样操作是一个常见且重要的计算环节。最近,微软DirectML项目团队在其最新版本中实现了对PyTorch中aten::upsample_bicubic2d.out算子的支持,这一进展对于使用AMD Radeon等GPU设备进行模型推理的用户具有重要意义。
背景与问题
双三次插值(bicubic interpolation)是一种高质量图像缩放算法,相比双线性插值能提供更平滑的边缘和更少的锯齿效应。在PyTorch框架中,这一功能通过aten::upsample_bicubic2d.out算子实现。然而,在之前的DirectML版本中,该算子尚未获得原生支持,导致运行时需要回退到CPU执行,不仅增加了数据传输开销,还显著影响了整体推理性能。
技术解决方案
DirectML团队在0.2.4.dev240815版本中实现了对该算子的完整支持。这一改进使得使用Radeon 6800等AMD GPU的用户能够直接在设备上执行双三次上采样操作,无需CPU回退。从技术实现角度看,这涉及到:
- 底层DML API对双三次插值算法的支持
- 与PyTorch算子系统的集成
- 性能优化以确保与CPU版本相比有显著加速
实际应用影响
这一改进特别有利于计算机视觉领域的应用,如深度估计模型ZoeDepth等。在这些模型中,高质量的上采样操作对于最终输出精度至关重要。之前由于算子不支持导致的CPU回退不仅影响性能,在某些情况下还会引发形状不匹配的错误(如错误信息中显示的(457,365)与(447,375)的形状冲突)。
升级建议
用户可以通过简单的pip命令升级到最新版本:
pip install torch-directml --upgrade
升级后,原本需要CPU回退的上采样操作现在可以直接在GPU上执行,既提高了性能,又避免了因设备切换导致的各种潜在问题。
未来展望
随着DirectML对PyTorch算子支持的不断完善,AMD GPU在深度学习推理领域的竞争力将进一步提升。开发团队持续关注用户反馈,优先实现高频使用算子的支持,这对于推动异构计算生态的发展具有重要意义。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









