DirectML项目中的aten::upsample_bicubic2d.out算子支持进展
在深度学习模型推理过程中,图像上采样操作是一个常见且重要的计算环节。最近,微软DirectML项目团队在其最新版本中实现了对PyTorch中aten::upsample_bicubic2d.out算子的支持,这一进展对于使用AMD Radeon等GPU设备进行模型推理的用户具有重要意义。
背景与问题
双三次插值(bicubic interpolation)是一种高质量图像缩放算法,相比双线性插值能提供更平滑的边缘和更少的锯齿效应。在PyTorch框架中,这一功能通过aten::upsample_bicubic2d.out算子实现。然而,在之前的DirectML版本中,该算子尚未获得原生支持,导致运行时需要回退到CPU执行,不仅增加了数据传输开销,还显著影响了整体推理性能。
技术解决方案
DirectML团队在0.2.4.dev240815版本中实现了对该算子的完整支持。这一改进使得使用Radeon 6800等AMD GPU的用户能够直接在设备上执行双三次上采样操作,无需CPU回退。从技术实现角度看,这涉及到:
- 底层DML API对双三次插值算法的支持
- 与PyTorch算子系统的集成
- 性能优化以确保与CPU版本相比有显著加速
实际应用影响
这一改进特别有利于计算机视觉领域的应用,如深度估计模型ZoeDepth等。在这些模型中,高质量的上采样操作对于最终输出精度至关重要。之前由于算子不支持导致的CPU回退不仅影响性能,在某些情况下还会引发形状不匹配的错误(如错误信息中显示的(457,365)与(447,375)的形状冲突)。
升级建议
用户可以通过简单的pip命令升级到最新版本:
pip install torch-directml --upgrade
升级后,原本需要CPU回退的上采样操作现在可以直接在GPU上执行,既提高了性能,又避免了因设备切换导致的各种潜在问题。
未来展望
随着DirectML对PyTorch算子支持的不断完善,AMD GPU在深度学习推理领域的竞争力将进一步提升。开发团队持续关注用户反馈,优先实现高频使用算子的支持,这对于推动异构计算生态的发展具有重要意义。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00