PostgreSQLML 扩展在已有PostgreSQL服务器上的编译安装指南
PostgreSQLML 是一个强大的机器学习扩展,能够直接在PostgreSQL数据库中执行机器学习操作。本文将详细介绍如何在已有的PostgreSQL 16服务器上从源码编译安装PostgreSQLML扩展,而不需要额外部署Docker容器。
准备工作
在开始编译安装前,请确保您的系统满足以下条件:
- 已安装PostgreSQL 16服务器(从源码编译安装)
- 系统为Debian或兼容的Linux发行版
- 具备基本的开发工具链(gcc, make等)
- 拥有足够的权限安装系统级软件包
编译安装步骤
1. 获取源代码
首先需要克隆PostgreSQLML的源代码仓库:
git clone https://github.com/postgresml/postgresml.git
cd postgresml
2. 初始化子模块
PostgreSQLML依赖一些子模块,这是编译过程中容易忽略的关键步骤:
git submodule update --init --recursive
这一步会下载并初始化所有必要的依赖项,确保编译时不会出现头文件缺失或链接错误。
3. 编译扩展
使用标准的PostgreSQL扩展编译流程:
make
编译过程会检查系统环境,构建扩展所需的二进制文件。如果遇到依赖缺失问题,可能需要安装额外的开发包。
4. 安装扩展
编译成功后,将扩展安装到PostgreSQL的扩展目录:
make install
这会将编译好的文件复制到PostgreSQL的共享扩展目录中,通常是/usr/local/pgsql/share/extension/
或类似路径。
5. 安装Python依赖
PostgreSQLML需要一些Python模块支持:
pip install -r requirements.txt
确保使用与PostgreSQL服务器配置兼容的Python版本。
常见问题解决
在编译过程中,可能会遇到以下问题:
-
头文件缺失错误:通常是由于缺少PostgreSQL开发包导致,确保安装了
postgresql-server-dev-16
或等效包。 -
链接错误:检查是否所有子模块都已正确初始化,重新运行
git submodule update
命令。 -
Python版本冲突:PostgreSQLML对Python版本有特定要求,确保系统Python版本与扩展兼容。
后续配置
安装完成后,在PostgreSQL中创建扩展:
CREATE EXTENSION pgml;
您可能需要根据具体需求配置扩展参数,如内存限制、并发设置等。
性能优化建议
- 根据服务器硬件配置调整PostgreSQLML的内存参数
- 考虑为机器学习操作配置专用的表空间
- 定期维护扩展相关的数据库对象
通过以上步骤,您就可以在现有的PostgreSQL 16服务器上成功部署PostgreSQLML扩展,无需额外容器化部署,直接享受数据库内机器学习的强大功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









