XcodeLLMEligible项目中的照片清理功能失效问题分析与解决方案
问题背景
在macOS开发社区中,许多开发者通过XcodeLLMEligible项目提供的Method 1方法强制启用Apple Intelligence功能。虽然大部分AI功能都能正常工作,但用户报告称照片应用中的新清理功能(CleanUp)无法使用。
技术分析
-
功能依赖关系:照片清理功能作为Apple Intelligence的核心组件之一,其激活机制与其他AI功能有所不同。它不仅需要基础的eligibility验证,还需要特定的系统环境配置。
-
区域限制特性:根据开发者反馈和测试,该功能确实存在比其他AI功能更严格的区域验证机制。即使通过常规方法绕过eligibility检查,仍可能因区域验证而无法使用。
-
系统版本要求:清理功能在macOS 15.1 Beta 3及以上版本才完全开放,对系统版本有明确要求。
解决方案
开发者Kyle-Ye提供了手动解决方案:
-
使用eligibility_util工具强制设置特定域的回答值:
./eligibility_util forceDomainAnswer --domain-name OS_ELIGIBILITY_DOMAIN_STRONTIUM --answer 4 -
该命令专门针对照片清理功能的核心验证域(STRONTIUM)进行设置,answer值4表示强制通过验证。
技术建议
-
版本兼容性:确保系统版本至少为macOS 15.1 Beta 3,这是清理功能正常工作的最低要求。
-
功能完整性:Apple Intelligence的不同组件可能采用独立的验证机制,开发者需要注意各功能可能有不同的激活方式。
-
后续更新:项目维护者表示将在后续脚本更新中集成此修复,建议关注项目更新以获取更简便的解决方案。
总结
通过分析可以看出,Apple Intelligence的不同功能组件采用了分层验证机制。照片清理功能作为较新的特性,其验证流程更为复杂。开发者提供的解决方案通过直接操作底层eligibility验证系统,有效绕过了区域限制,为用户提供了完整的AI功能体验。这体现了开源社区在解决系统限制方面的创造力和协作精神。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00