PVM 的安装和配置教程
2025-05-18 03:38:39作者:宣海椒Queenly
1. 项目的基础介绍和主要的编程语言
PVM(Predictive Vision Model)是一个开源项目,旨在通过连续视频的无需监督学习,在一个可扩展的预测循环网络中实现视觉预测。该项目是Piekniewski等人于2016年的论文《Unsupervised Learning from Continuous Video in a Scalable Predictive Recurrent Network》的代码实现。PVM能够利用多核处理器进行并行计算,通过共享内存中的全局屏障同步大量的Python对象。主要编程语言为Python,同时使用了Cython和C++进行性能优化。
2. 项目使用的关键技术和框架
PVM项目使用了以下关键技术和框架:
- 预测循环网络(Predictive Recurrent Network):用于处理视频数据,预测下一个视频帧。
- 多线程和多进程:利用Python的
multiprocessing库和Cython的多线程支持,实现多核并行计算。 - OpenCV:用于视频处理和图像分析。
- NumPy:用于高性能的数学计算。
- Cython:将Python代码转换为C代码,提高运行效率。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 16.04(也可以在15.10、15.04和14.04上运行,但以16.04为测试版本)。
- Python版本:Python 2.7(项目可能不兼容Python 3.x版本)。
- 硬件:尽可能多的计算核心。
安装步骤
-
克隆项目
打开终端,使用以下命令克隆项目:
git clone git@github.com:braincorp/PVM.git cd PVM -
安装依赖
运行以下脚本安装必要的系统依赖:
sudo ./install_ubuntu_dependencies.sh这个脚本会安装OpenCV、NumPy、gcc、Cython等必要的包。这个过程可能需要一些时间,具体取决于您的网络连接速度。
-
编译和初始化
在所有依赖安装完成后,运行以下命令编译Cython/Boost绑定并初始化GitHub模块:
source install_local.sh确保在执行过程中没有出现错误。此脚本还将更新
PYTHONPATH变量,以便您可以从当前终端窗口运行内容。请注意,如果打开另一个窗口,您将需要重新设置PYTHONPATH。 -
下载数据(可选)
如果您想运行一些演示或模型,可能需要数据。请运行以下脚本来下载和解压数据:
./download_data.sh根据提示回答'yes'。请注意,这些文件的大小在1.5GB到3.5GB之间,总共需要7GB的存储空间。
-
运行演示(可选)
进入
PVM_models目录,运行以下任一演示:python demo00_run.py或者:
python demo01_run.py根据需要,您可以尝试其他演示。
通过以上步骤,您应该能够成功安装和配置PVM项目,并开始探索其功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1