Coqui TTS在Apple M系列芯片上的MPS支持问题分析
背景介绍
Coqui TTS是一个开源的文本转语音工具库,支持多种语音合成模型。随着Apple Silicon芯片(M1/M2/M3系列)的普及,越来越多的开发者希望在Mac设备上运行深度学习模型。PyTorch为此提供了MPS(Metal Performance Shaders)后端,可以充分利用Apple芯片的GPU加速能力。
问题现象
在M系列Mac设备上运行Coqui TTS的XTTS v2模型时,会出现"MPS设备不支持输出通道数大于65536"的错误。具体表现为在计算语音特征时,卷积操作超过了MPS设备的限制。
技术分析
这个问题的根源在于PyTorch对MPS后端的实现限制。MPS设备对卷积操作的输出通道数有严格限制(不超过65536),而XTTS模型中的某些层可能超过了这个限制。PyTorch团队在2.6版本后还引入了更严格的权重加载安全检查机制,这会导致模型加载时出现额外的兼容性问题。
解决方案
目前有两种可行的解决方案:
-
使用环境变量临时回退到CPU:设置
PYTORCH_ENABLE_MPS_FALLBACK=1可以让PyTorch在遇到不支持的MPS操作时自动回退到CPU执行。虽然这会降低性能,但可以保证模型正常运行。 -
使用改进的分支版本:社区中有一个改进的分支版本,该版本更新了依赖库并优化了MPS支持。测试表明,这个分支版本可以更好地兼容M系列芯片,避免了原始版本中的各种兼容性问题。
模型训练考量
对于希望在M系列Mac上训练TTS模型的开发者,需要注意:
- 目前主流的TTS模型(如GlowTTS、XTTS等)在训练阶段通常需要更大的显存和计算资源
- MPS后端在训练场景下的支持程度可能不如推理场景完善
- 建议在训练阶段考虑使用云GPU或配置更高的Mac设备
总结
虽然Apple Silicon芯片为本地AI开发带来了新的可能性,但在实际使用中仍需注意框架和模型对MPS后端的支持程度。Coqui TTS社区正在积极改进对Apple芯片的支持,开发者可以关注相关分支版本的进展。对于生产环境使用,建议充分测试模型在目标设备上的性能和稳定性表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00