Coqui TTS在Apple M系列芯片上的MPS支持问题分析
背景介绍
Coqui TTS是一个开源的文本转语音工具库,支持多种语音合成模型。随着Apple Silicon芯片(M1/M2/M3系列)的普及,越来越多的开发者希望在Mac设备上运行深度学习模型。PyTorch为此提供了MPS(Metal Performance Shaders)后端,可以充分利用Apple芯片的GPU加速能力。
问题现象
在M系列Mac设备上运行Coqui TTS的XTTS v2模型时,会出现"MPS设备不支持输出通道数大于65536"的错误。具体表现为在计算语音特征时,卷积操作超过了MPS设备的限制。
技术分析
这个问题的根源在于PyTorch对MPS后端的实现限制。MPS设备对卷积操作的输出通道数有严格限制(不超过65536),而XTTS模型中的某些层可能超过了这个限制。PyTorch团队在2.6版本后还引入了更严格的权重加载安全检查机制,这会导致模型加载时出现额外的兼容性问题。
解决方案
目前有两种可行的解决方案:
-
使用环境变量临时回退到CPU:设置
PYTORCH_ENABLE_MPS_FALLBACK=1
可以让PyTorch在遇到不支持的MPS操作时自动回退到CPU执行。虽然这会降低性能,但可以保证模型正常运行。 -
使用改进的分支版本:社区中有一个改进的分支版本,该版本更新了依赖库并优化了MPS支持。测试表明,这个分支版本可以更好地兼容M系列芯片,避免了原始版本中的各种兼容性问题。
模型训练考量
对于希望在M系列Mac上训练TTS模型的开发者,需要注意:
- 目前主流的TTS模型(如GlowTTS、XTTS等)在训练阶段通常需要更大的显存和计算资源
- MPS后端在训练场景下的支持程度可能不如推理场景完善
- 建议在训练阶段考虑使用云GPU或配置更高的Mac设备
总结
虽然Apple Silicon芯片为本地AI开发带来了新的可能性,但在实际使用中仍需注意框架和模型对MPS后端的支持程度。Coqui TTS社区正在积极改进对Apple芯片的支持,开发者可以关注相关分支版本的进展。对于生产环境使用,建议充分测试模型在目标设备上的性能和稳定性表现。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









