PEFT项目中P-Tuning模型保存与加载的技术解析
2025-05-12 13:30:27作者:董灵辛Dennis
引言
在自然语言处理领域,参数高效微调(PEFT)技术因其能够大幅减少训练参数数量而受到广泛关注。其中P-Tuning作为一种有效的提示调优方法,在实际应用中展现出良好的性能。本文将深入分析PEFT项目中P-Tuning模型的保存与加载机制,帮助开发者更好地理解和使用这一技术。
P-Tuning模型结构概述
P-Tuning模型主要由两部分组成:
- 提示嵌入层(Prompt Embedding):负责将离散的提示词转换为连续向量
- MLP网络层:对提示嵌入进行进一步处理,增强其表达能力
在PEFT实现中,P-Tuning通过向基础模型注入可训练参数来实现高效微调,同时保持原始模型参数不变。
模型保存机制分析
当前PEFT实现中,当调用save_pretrained
方法保存P-Tuning模型时,系统仅保存提示嵌入层的参数,而MLP网络层的参数并未被保存。这种设计基于以下技术考量:
- 在大多数应用场景中,P-Tuning模型训练完成后直接用于推理,不需要继续训练
- 简化模型保存体积,仅保留必要的推理组件
- 减少模型部署时的计算资源消耗
模型加载的注意事项
开发者在使用from_pretrained
加载P-Tuning模型时需要注意:
- 加载后的模型默认仅包含提示嵌入层,MLP网络层不会恢复
- 如需继续训练,需要采用完整的PyTorch保存方式(
torch.save
) - 分类任务中,分类器层会被微调,这是PEFT框架的通用设计
技术实现细节
P-Tuning在推理阶段的工作流程如下:
- 随机初始化的提示嵌入被生成
- 这些嵌入与输入序列拼接
- 组合后的序列通过基础模型的词嵌入层处理
- 最终输入被送入基础模型进行前向计算
值得注意的是,训练好的P-Tuning参数会通过这一流程影响模型输出,尽管MLP层在推理时可能未被显式加载。
实际应用建议
对于不同应用场景,开发者可参考以下建议:
- 仅用于推理:直接使用PEFT提供的标准保存加载方式即可
- 需要继续训练:使用
torch.save
保存完整模型状态 - 分类任务:注意分类器层的微调行为,必要时可冻结部分参数
- 自定义需求:可考虑修改PEFT源码,实现MLP层的完整保存功能
总结
PEFT项目中的P-Tuning实现提供了高效的参数微调方案,其保存加载机制针对典型应用场景进行了优化。理解这些技术细节有助于开发者根据实际需求选择合适的模型处理方式,在模型效果和资源消耗间取得平衡。随着PEFT项目的持续发展,未来可能会提供更灵活的模型保存选项,满足多样化的应用需求。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0365Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++091AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.16 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
971
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
206
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17