ArcticTraining项目中的ArcticSynth:批量数据合成工具详解
2025-06-01 04:13:34作者:何举烈Damon
概述
ArcticSynth是ArcticTraining项目中的一个Python客户端工具,专门用于批量数据合成任务。它为不同服务提供了统一接口,简化了批量处理流程,特别适合需要大规模生成数据的场景。相比传统的在线推理服务,ArcticSynth能显著降低成本(约50%)并大幅提高处理速度。
核心特性
- 多服务支持:封装了多种主流AI服务的批量API
- 灵活执行模式:支持同步和异步两种任务处理方式
- 自动批处理:智能管理大文件分割与结果合并
- 命令行接口:提供便捷的CLI工具进行任务管理
安装指南
ArcticSynth作为ArcticTraining的一部分提供,安装方式根据使用场景有所不同:
# 基础安装(适用于OpenAI/Azure OpenAI)
pip install -e .
# 如需使用Snowflake Cortex
pip install -e '.[cortex]'
# 如需使用vLLM本地推理
pip install -e '.[vllm]'
支持的服务类型
ArcticSynth目前支持以下服务:
- OpenAISynth:OpenAI的批量API
- AzureOpenAISynth:Azure OpenAI的批量API
- CortexSynth:Snowflake Cortex服务
- VllmSynth:vLLM本地批量推理
使用说明
客户端初始化
以Azure OpenAI为例,初始化客户端需要提供API密钥和相关配置:
from arctic_training.arctic_synth import AzureOpenAISynth
import os
client = AzureOpenAISynth(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-07-01-preview",
azure_endpoint="https://<your-endpoint-url>",
batch_size=50000 # 可选,调整批量大小
)
参数说明:
batch_size:控制每批请求的数量,默认100,000(Azure OpenAI允许的最大值)- 对于包含大文件(如图像)的请求,建议减小此值以避免单个文件过大
添加批量任务
使用add_chat_to_batch_task方法添加聊天任务,参数与原始OpenAI API保持一致:
client.add_chat_to_batch_task(
task_name="demo_task",
model="gpt-4",
messages=[
{"role": "user", "content": "请解释量子计算的基本原理"},
{"role": "assistant", "content": "量子计算利用量子比特..."},
{"role": "user", "content": "与传统计算相比有哪些优势?"}
],
temperature=0.7
)
同步执行任务
同步方式会提交任务并等待返回结果:
# 执行任务
raw_results = client.execute_batch_task("demo_task")
# 解析结果
parsed_results = client.extract_messages_from_responses(raw_results)
异步任务管理(仅限Azure/OpenAI)
对于长时间运行的任务,可采用异步流程:
# 保存任务到本地
client.save_batch_task("demo_task")
# 上传到服务端
client.upload_batch_task("demo_task")
# 提交执行
client.submit_batch_task("demo_task")
# 后续检查状态和下载结果
client.retrieve_batch_task("demo_task")
client.download_batch_task("demo_task")
命令行工具
ArcticSynth提供了便捷的CLI工具:
# 基本语法
arctic_synth -t <任务名称> [选项]
# 示例:上传并提交任务
arctic_synth -t demo_task -u -s
# 下载结果
arctic_synth -t demo_task -d
# 清理旧文件(谨慎使用!)
arctic_synth --clean_files_older_than_n_days 7
重要提示:清理操作会删除服务端所有符合条件的文件,不仅是当前用户创建的,使用时需格外小心。
最佳实践
- 批量大小优化:根据请求内容和网络条件调整
batch_size - 错误处理:实现适当的重试机制应对网络波动
- 结果验证:对返回数据进行完整性检查
- 资源监控:大型任务执行时关注内存和网络使用情况
适用场景
- 大规模数据集生成
- 模型微调前的数据增强
- 并行测试不同提示词效果
- 自动化内容生成流水线
通过ArcticSynth,开发者可以高效地管理和执行批量数据合成任务,显著提升工作效率并降低计算成本。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355