ArcticTraining项目中的ArcticSynth:批量数据合成工具详解
2025-06-01 04:59:47作者:何举烈Damon
概述
ArcticSynth是ArcticTraining项目中的一个Python客户端工具,专门用于批量数据合成任务。它为不同服务提供了统一接口,简化了批量处理流程,特别适合需要大规模生成数据的场景。相比传统的在线推理服务,ArcticSynth能显著降低成本(约50%)并大幅提高处理速度。
核心特性
- 多服务支持:封装了多种主流AI服务的批量API
- 灵活执行模式:支持同步和异步两种任务处理方式
- 自动批处理:智能管理大文件分割与结果合并
- 命令行接口:提供便捷的CLI工具进行任务管理
安装指南
ArcticSynth作为ArcticTraining的一部分提供,安装方式根据使用场景有所不同:
# 基础安装(适用于OpenAI/Azure OpenAI)
pip install -e .
# 如需使用Snowflake Cortex
pip install -e '.[cortex]'
# 如需使用vLLM本地推理
pip install -e '.[vllm]'
支持的服务类型
ArcticSynth目前支持以下服务:
- OpenAISynth:OpenAI的批量API
- AzureOpenAISynth:Azure OpenAI的批量API
- CortexSynth:Snowflake Cortex服务
- VllmSynth:vLLM本地批量推理
使用说明
客户端初始化
以Azure OpenAI为例,初始化客户端需要提供API密钥和相关配置:
from arctic_training.arctic_synth import AzureOpenAISynth
import os
client = AzureOpenAISynth(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-07-01-preview",
azure_endpoint="https://<your-endpoint-url>",
batch_size=50000 # 可选,调整批量大小
)
参数说明:
batch_size
:控制每批请求的数量,默认100,000(Azure OpenAI允许的最大值)- 对于包含大文件(如图像)的请求,建议减小此值以避免单个文件过大
添加批量任务
使用add_chat_to_batch_task
方法添加聊天任务,参数与原始OpenAI API保持一致:
client.add_chat_to_batch_task(
task_name="demo_task",
model="gpt-4",
messages=[
{"role": "user", "content": "请解释量子计算的基本原理"},
{"role": "assistant", "content": "量子计算利用量子比特..."},
{"role": "user", "content": "与传统计算相比有哪些优势?"}
],
temperature=0.7
)
同步执行任务
同步方式会提交任务并等待返回结果:
# 执行任务
raw_results = client.execute_batch_task("demo_task")
# 解析结果
parsed_results = client.extract_messages_from_responses(raw_results)
异步任务管理(仅限Azure/OpenAI)
对于长时间运行的任务,可采用异步流程:
# 保存任务到本地
client.save_batch_task("demo_task")
# 上传到服务端
client.upload_batch_task("demo_task")
# 提交执行
client.submit_batch_task("demo_task")
# 后续检查状态和下载结果
client.retrieve_batch_task("demo_task")
client.download_batch_task("demo_task")
命令行工具
ArcticSynth提供了便捷的CLI工具:
# 基本语法
arctic_synth -t <任务名称> [选项]
# 示例:上传并提交任务
arctic_synth -t demo_task -u -s
# 下载结果
arctic_synth -t demo_task -d
# 清理旧文件(谨慎使用!)
arctic_synth --clean_files_older_than_n_days 7
重要提示:清理操作会删除服务端所有符合条件的文件,不仅是当前用户创建的,使用时需格外小心。
最佳实践
- 批量大小优化:根据请求内容和网络条件调整
batch_size
- 错误处理:实现适当的重试机制应对网络波动
- 结果验证:对返回数据进行完整性检查
- 资源监控:大型任务执行时关注内存和网络使用情况
适用场景
- 大规模数据集生成
- 模型微调前的数据增强
- 并行测试不同提示词效果
- 自动化内容生成流水线
通过ArcticSynth,开发者可以高效地管理和执行批量数据合成任务,显著提升工作效率并降低计算成本。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25