scikit-image教程:图像作为数组的基础操作指南
2025-07-06 08:09:51作者:殷蕙予
前言
在数字图像处理领域,理解图像在计算机中的表示方式是基础中的基础。本教程将基于scikit-image库,深入讲解图像作为多维数组的本质特性,并通过实践练习帮助读者掌握相关操作技巧。
图像的本质:多维数组
在计算机中,图像本质上是一个多维数组(NumPy数组)。对于彩色图像,通常表示为三维数组(高度×宽度×颜色通道),而灰度图像则是二维数组(高度×宽度)。
基础环境准备
首先我们需要导入必要的库:
%matplotlib inline
import numpy as np
from skimage import data, io, color, img_as_float
import matplotlib.pyplot as plt
练习1:绘制字母H
问题描述
编写一个函数,在指定位置绘制绿色字母H。H的尺寸要求:
- 高度:24像素
- 宽度:20像素
- 线条宽度:3像素
解决方案
def draw_H(image, coords, color=(0, 255, 0)):
out = image.copy()
# 定义绘制区域
canvas = out[coords[0]:coords[0] + 24,
coords[1]:coords[1] + 20]
# 绘制H的两条竖线
canvas[:, :3] = color # 左侧竖线
canvas[:, -3:] = color # 右侧竖线
# 绘制H的横线
canvas[11:14] = color # 中间横线
return out
测试示例
cat = data.chelsea()
cat_H = draw_H(cat, (50, -50))
plt.imshow(cat_H)
这个练习展示了如何通过直接操作数组来修改图像内容,这是图像处理的基础操作。
练习2:可视化RGB通道
问题描述
将彩色图像分解为R、G、B三个通道,并分别显示每个通道的灰度图像。
解决方案
image = plt.imread('Bells-Beach.jpg')
# 分离通道
r = image[..., 0] # 红色通道
g = image[..., 1] # 绿色通道
b = image[..., 2] # 蓝色通道
# 创建子图
f, axes = plt.subplots(1, 4, figsize=(16, 5))
for ax in axes:
ax.axis('off')
# 显示各通道
axes[0].imshow(r, cmap='gray')
axes[0].set_title('红色通道')
axes[1].imshow(g, cmap='gray')
axes[1].set_title('绿色通道')
axes[2].imshow(b, cmap='gray')
axes[2].set_title('蓝色通道')
# 显示合并后的彩色图像
axes[3].imshow(np.stack([r, g, b], axis=2))
axes[3].set_title('所有通道')
深入理解
通过这个练习,我们可以直观地看到:
- 不同颜色通道对最终图像的贡献不同
- 某些特征在不同通道中的表现可能截然不同
- 理解通道分离有助于后续的图像处理操作
练习3:RGB通道组合实验
问题描述
创建三个独立的圆形图案分别代表R、G、B通道,观察它们组合后的效果。
解决方案
from skimage import draw
# 创建三个300x300的空白图像
red = np.zeros((300, 300))
green = np.zeros((300, 300))
blue = np.zeros((300, 300))
# 在红色通道绘制圆形
r, c = draw.disk(center=(100, 100), radius=100)
red[r, c] = 1
# 在绿色通道绘制圆形
r, c = draw.disk(center=(100, 200), radius=100)
green[r, c] = 1
# 在蓝色通道绘制圆形
r, c = draw.disk(center=(200, 150), radius=100)
blue[r, c] = 1
# 显示组合结果
plt.imshow(np.stack([red, green, blue], axis=2))
这个实验生动展示了RGB色彩模型的叠加原理,以及不同颜色通道组合产生新颜色的过程。
练习4:RGB转灰度图像
问题描述
将RGB图像转换为灰度图像,比较不同转换方法的差异。
转换原理
人眼对不同颜色的敏感度不同,因此RGB到灰度的转换不是简单的平均值,而是加权平均:
Y = 0.2126R + 0.7152G + 0.0722B
实现代码
image = img_as_float(io.imread('balloon.jpg'))
# 使用scikit-image内置方法
gray = color.rgb2gray(image)
# 手动实现
my_gray = image @ [0.2126, 0.7152, 0.0722]
# 简单平均法
naive_gray = image.mean(axis=2)
# 显示结果
f, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(gray, cmap='gray')
axes[0].set_title('scikit-image方法')
axes[1].imshow(my_gray, cmap='gray')
axes[1].set_title('加权平均法')
axes[2].imshow(naive_gray, cmap='gray')
axes[2].set_title('简单平均法')
结果分析
通过比较可以发现:
- scikit-image内置方法与手动实现的加权平均法结果几乎一致
- 简单平均法会产生较暗的图像,因为未考虑人眼对不同颜色的敏感度差异
- 加权平均法更符合人眼感知的亮度
总结
本教程通过四个实践练习,深入讲解了图像作为数组的基本操作:
- 直接修改数组来绘制简单图形
- 分解和显示RGB通道
- 理解RGB通道的组合原理
- RGB到灰度的转换方法比较
掌握这些基础操作是进行更复杂图像处理的前提。在实际应用中,理解图像的数组本质能够帮助我们更高效地实现各种图像处理算法。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1