Mutative 项目中的 Draft 类型与 current 函数类型问题解析
Mutative 是一个 JavaScript 状态管理库,它提供了不可变数据结构的可变操作能力。在最新版本 v1.1.0 中,开发团队针对 Draft 类型和 current 函数的类型系统进行了重要改进,解决了类型系统中的一些关键问题。
Draft 类型与 current 函数的设计初衷
在 Mutative 中,Draft<T>
类型代表了一个可变的、草稿状态的数据结构,而 current()
函数则用于从草稿状态获取当前的实际值。这种设计模式允许开发者在保持不可变数据特性的同时,使用可变操作语法来修改数据。
原始类型系统的问题
在之前的版本中,current()
函数的类型定义存在两个主要问题:
- 当传入
Draft<T>
类型参数时,返回类型仍然是Draft<T>
,而不是预期的T
类型 Draft<T>
类型不能直接赋值给T
类型,尽管从概念上讲Draft<T>
应该是T
的子类型
这些问题导致了类型检查时的意外错误,限制了库的灵活性。
类型系统的改进方案
开发团队经过讨论,决定对类型系统进行以下改进:
- 修改
current()
函数的类型定义,使其在接收Draft<T>
参数时返回T
类型:
function current<T>(value: Draft<T>): T;
- 引入新的类型转换函数
castMutable
,用于显式地将Draft<T>
转换为T
:
function castMutable<T>(draft: Draft<T>): T;
技术实现考量
这些改进背后有几个重要的技术考量:
-
类型安全性:虽然
Draft<T>
在概念上是T
的子类型,但从实现角度看,草稿状态可能包含中间状态,因此直接赋值可能不安全。显式的类型转换函数提供了更好的类型安全保证。 -
向后兼容性:修改
current()
的返回类型是一个破坏性变更,因此团队考虑过引入新 API(如getCurrent()
)来避免影响现有代码。 -
开发者体验:通过改进类型定义,开发者不再需要手动类型断言,代码更加简洁直观。
实际应用示例
改进后的类型系统使得以下代码能够正常工作:
function test<T extends { x: { y: ReadonlySet<string> } }>(base: T): T {
const [draft] = create(base);
const currentValue: T = current(draft); // 现在可以正确类型检查
return currentValue;
}
对于需要将 Draft<T>
赋值给 T
的场景,可以使用新的 castMutable
函数:
function test<T extends { x: { y: ReadonlySet<string> } }>(base: T): T {
const [draft] = create(base);
const mutableValue: T = castMutable(draft);
return mutableValue;
}
总结
Mutative v1.1.0 中的这些类型系统改进,既解决了实际开发中的痛点,又保持了良好的类型安全性。通过精确的类型定义和新增的辅助函数,开发者现在可以更自然地在可变操作和不可变数据之间进行转换,同时享受 TypeScript 类型系统带来的安全保障。
这些改进体现了 Mutative 团队对开发者体验的重视,也展示了如何在实际项目中平衡类型安全性和开发便利性。对于使用 Mutative 进行状态管理的项目来说,升级到 v1.1.0 将带来更流畅的类型检查体验。
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen-Image我们隆重推出 Qwen-Image,这是通义千问系列中的图像生成基础模型,在复杂文本渲染和精准图像编辑方面取得重大突破。Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,面向全球开发者、创造者及科技爱好者,吹响AI应用开发的集结号!08- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0259- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









