LM-Evaluation-Harness项目中的多模态评估功能扩展
在开源项目LM-Evaluation-Harness中,开发者们最近针对多模态模型评估功能进行了重要扩展。该项目作为一个强大的语言模型评估工具集,原本主要面向纯文本模型的性能测试,但随着多模态AI模型的快速发展,项目团队也相应增强了这方面的支持能力。
技术背景方面,多模态模型能够同时处理文本、图像等多种输入形式,这种能力在视觉问答(VQA)、图表理解等任务中尤为重要。然而在早期版本中,当用户尝试通过local_completions接口评估本地部署的多模态模型时,系统会抛出错误提示,明确指出当前模型类型不支持多模态输入。
项目维护者迅速响应了这一需求,在最新提交中实现了对local-chat-completions接口的多模态支持。这一改进使得开发者能够更灵活地评估各类本地部署的多模态模型,而不仅限于原先支持的hf-multimodal和vllm-vlm两种模型类型。
从技术实现角度看,这次扩展主要涉及评估流程中多模态输入的适配处理。系统现在能够正确识别和处理包含图像等非文本内容的输入数据,并将其传递给本地部署的模型接口。值得注意的是,该功能首先在OpenAI的chat-completions端点上完成测试验证,表明其设计具有良好的通用性,可以方便地适配到其他类似的本地API接口。
对于开发者而言,这一改进意味着他们现在可以使用统一的评估框架来测试不同部署方式下的多模态模型性能。无论是云端API还是本地服务,都能通过LM-Evaluation-Harness进行标准化评估,这大大简化了模型对比和性能分析的工作流程。
经过实际测试验证,新功能运行稳定,评估结果准确可靠。这一进展不仅解决了用户面临的实际问题,也为项目未来的多模态功能扩展奠定了良好基础。随着多模态AI技术的持续发展,LM-Evaluation-Harness项目有望进一步完善其评估体系,为研究者提供更全面、更强大的模型测试工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00