Atlas项目中pgvector的HNSW索引创建指南
2025-06-01 02:40:46作者:滑思眉Philip
背景介绍
在PostgreSQL生态系统中,pgvector是一个流行的扩展,用于存储和查询向量数据。随着AI和机器学习应用的普及,高效查询高维向量数据变得尤为重要。HNSW(Hierarchical Navigable Small World)是pgvector支持的一种高效索引类型,专门用于加速向量相似性搜索。
问题描述
在使用Atlas项目(一个数据库schema管理工具)时,开发者遇到了创建HNSW索引的挑战。具体表现为:
- 默认生成的SQL语句缺少必要的操作符类(operator class)
- 无法指定HNSW索引特有的参数(如m和ef_construction)
- 生成的索引创建语句不符合pgvector的要求
解决方案
Atlas项目团队已经解决了这些问题,以下是正确的HNSW索引创建方法:
基本语法
index "hnsw_embedding_idx" {
type = "hnsw"
on {
column = column.embedding
ops = "vector_l2_ops" # 或其他操作符类
}
}
完整示例
schema "public" {}
extension "vector" {
schema = schema.public
version = "0.8.0"
}
table "items" {
schema = schema.public
column "id" {
type = text
null = false
}
column "embedding" {
type = sql("vector(384)")
null = true
}
primary_key {
columns = [column.id]
}
index "hnsw_embedding_idx" {
type = "HNSW"
on {
column = column.embedding
ops = "vector_l2_ops"
}
storage_params {
m = 16
ef_construction = 64
}
}
}
关键点说明
-
操作符类选择:
vector_l2_ops:用于欧几里得距离(L2)搜索vector_ip_ops:用于内积(IP)相似性搜索vector_cosine_ops:用于余弦相似性搜索
-
HNSW参数:
m:控制图中每个节点的最大连接数,影响索引构建时间和搜索性能ef_construction:控制索引构建时的搜索范围,影响索引质量和构建时间
-
版本要求:
- 需要使用Atlas Pro版本才能正确识别这些参数和vector扩展
最佳实践
- 根据应用场景选择合适的操作符类
- 调整HNSW参数以平衡查询性能和索引构建时间
- 在生产环境部署前进行充分的性能测试
- 定期监控索引性能并根据数据变化进行调整
总结
通过Atlas项目创建pgvector的HNSW索引时,需要特别注意操作符类和HNSW特定参数的配置。正确的配置可以显著提升向量相似性搜索的性能,为AI和机器学习应用提供高效的向量检索能力。随着Atlas项目的持续更新,开发者可以期待更完善的支持和更便捷的操作体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137